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ABSTRUCT 

 
 

Quantum computation is a new field bridging many 
disciplines, including theoretical physics, functional analysis 
and group theory, electrical engineering, computer science, 
and quantum cryptography. The goal of this paper is to 
explore the base of quantum computation that serves to build 
up a secure algorithm for keys in the unsecured 
communication channel between two hosts (computers) by 
applying quantum key exchange algorithm which has highly 
guarantee protecting toward the computational complexity 
because the quantum key exchange algorithm is more complex 
in computation than the classical key exchange algorithm if it 
perform in classical computer. Also, this algorithm (key 
exchange algorithm) provides the ability to perform in 
quantum computer if will be available in future.  
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1. Introduction 
 
In particular, quantum mechanics can be used to help solve 

the key distribution problem, which is encountered by any two 
entities that wish to communicate using a cryptographically 
protected channel. If any one want to use a traditional block 
cipher and message authentication code to protect their 
communications, they need to agree upon a shared key to use. 
This problem is currently solved using public-key cryptography 
algorithm. Each one generates a public-private key pair and 
registers their public key with a Certification Authority. The 
Certification Authority then creates a certificate for each of them 
and distributes the certificate to the other party. They can now 
use their private keys and the public key contained in each other’s 
certificate to agree upon a shared symmetric key to be used in the 
block cipher or message authentication code. A number of specific 
algorithms and protocols exist for doing this. These include key 
exchange algorithm agreement, RSA algorithm (key transport), 
etc. 

Public-key cryptography algorithm is currently secure. 
Using key sizes currently in use, it appears infeasible for any 
attacker to be able to obtain a user’s private key solely from 
his/her public key, which is what would typically be required to 
break these schemes. However, in theory, if sufficient computing 
power existed or if a solution is found to the mathematical 
problem upon which the algorithm is based, then these schemes 
could be vulnerable to attack. There is no reason to believe that 
either of these outcomes is likely. However, since the security 
provided is computational, rather than absolute. 

A quantum computer can be implemented using any small 
particle that can have two states. Quantum computers might be 
built from atoms that are both excited and not excited at the same 
time. They might be built from photons of light that are in two 
places at the same time. They might be built from protons and 
neutrons that have a spin of "up" and "down" at the same time. 

http://www.fact-index.com/p/ph/photon.html
http://www.fact-index.com/s/sp/spin__physics_.html
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It is widely suspected that if large-scale quantum 

computers can be built, they will be able to solve certain problems 
faster than any classical computer. Quantum computers are 
different from classical computers, such computers are based on 
transistors, even though these use quantum mechanical effects 
other than state superpositions [1,2,3]. 

 
2. Short Story of Quantum Computing 

 
The story of a computational device based on quantum 

mechanics was first explored in the 1970's and early 1980's by 
physicists and computer scientists. The idea emerged when 
scientists were pondering the fundamental limits of computation.  
They understood that if technology continued to abide by Moore's 
Law, then the continually shrinking size of circuitry packed onto 
silicon chips would eventually reach a point where individual 
elements would be no larger than a few atoms.  Here a problem 
arose because at the atomic scale the physical laws that govern the 
behavior and properties of the circuit are inherently quantum 
mechanical in nature, not classical.  This then raised the question 
of whether a new kind of computer could be devised based on the 
principles of quantum physics. 

 The idea of quantum computation started as early as 1982, 
when the physicist Richard Feynman considered simulation of 
quantum-mechanical objects by other quantum systems. 
However, the unusual power of quantum computation was not 
really anticipated until the 1985 when David Deutsch published a 
crucial theoretical in which he described a universal quantum 
computer. After the Deutsch, the hunt was on for something 
interesting for quantum computers to do. At the time all that 
could be found were a few rather contrived mathematical 
problems and the whole issue of quantum computation seemed 
little more than an academic curiosity. 

http://www.whatis.com/mooresla.htm
http://www.whatis.com/mooresla.htm
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 It all changed rather suddenly in 1994 when Peter Shor 
devised the first quantum algorithm that, in principle, can 
perform efficient factorization. 

Quantum algorithms require a quantum computer. The 
first quantum algorithm that can run faster on a quantum 
computer than on any classical computer was put forward by 
Deutsch in 1985 and generalized by Deutsch and Jozsa in 1992. 
The problem they solved–deciding if all possible results of a 
function are either identical or equally distributed between two 
values-had little practical relevance. 

A very useful algorithm was developed in 1994 by 
Coppersmith: he showed how the Fourier transform can be 
implemented efficiently on a quantum computer. The Fourier 
transform has a wide range of applications in physics and 
mathematics. In particular it is also used in number theory for 
factoring large numbers.[2,4] 

 

3. The Basis of Quantum Computing  

In quantum mechanics, the state of a physical system (such 
as an electron or a photon) is described by an element of a 
mathematical object called a Hilbert space. The realization of the 
Hilbert space depends on the particular system. For instance, in 
the case of a single particle system, the state can be described by a 
complex-valued function defined on R3 (three-dimensional space) 
called a wave function. As described in the article on quantum 
mechanics, this function has a probabilistic interpretation; of 
particular significance is that quantum states have a property 
called superposition. A similar realization of the Hilbert space 
exists for systems of interacting particles. The time evolution of 
the system state is given by a family {Ut} (with t denoting time) of 
unitary transformations of H. Thus if φ is the state at time 0, then 
Ut φ is the state at time t. 
 

http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Photon
http://en.wikipedia.org/wiki/Hilbert_space
http://en.wikipedia.org/wiki/Wavefunction
http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Quantum_superposition
http://en.wikipedia.org/wiki/Time_evolution
http://en.wikipedia.org/wiki/Unitary
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A classical computer has a memory made up of bits, where 
each bit holds either a one or a zero. The device computes by 
manipulating those bits, i.e. by transporting these bits from 
memory to logic gates and back. A quantum computer maintains 
a set of qubits. A qubit can hold a one, or a zero, or a 
superposition of these. A quantum computer operates by 
manipulating those qubits, i.e. by transporting these bits from 
memory to quantum logic gates and back. Qubits for a quantum 
computer can be implemented using particles with two spin states: 
"up" and "down"; in fact any system, possessing an observable 
quantity A which is conserved under time evolution and such that 
A has at least two discrete and sufficiently spaced consecutive 
eigenvalues, is a suitable candidate for implementing a qubit. 

A quantum bit, or qubit, is a unit vector in a two 
dimensional complex vector space for which a particular basis, 
denoted by {|0>, |1>}, has been fixed. The orthonormal basis |0> 
and |1> may correspond to the | > and | > polarizations of a 
photon respectively, or to the polarizations | > and | >. Or |0> 
and |1> could correspond to the spin-up and spin-down states of 
an electron. 

 For the purposes of quantum computing, the basis states 
|0> and |1> are taken to encode the classical bit values 0 and 1 
respectively. Unlike classical bits however, qubits can be in a 
superposition of |0>and |1> such as a|0>+ b |1> where a and b are 
complex numbers such that |a|2 + |b|2 = 1. Just as in the photon 
polarization case, if such a superposition is measured with respect 
to the basis {|0>, |1>}, the probability that the measured value is 
|0> is |a|2 and the probability that the measured value is |0> is |b|2. 
When talking about qubits, and quantum computations in 
general, a fixed basis with respect to which all statements are 
made has been chosen in advance. In particular, unless otherwise 
specified, all measurements are made with respect to the standard 
basis for quantum computation {|0>, |1>}.[4,5] 

http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/Qubit
http://en.wikipedia.org/wiki/Quantum_gate
http://en.wikipedia.org/wiki/Spin_(physics)
http://en.wikipedia.org/wiki/Observable
http://en.wikipedia.org/wiki/Eigenvalue
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4. Quantum bits (qubits) 

Consider first a classical computer that operates on a 3 bit 
register. At a given time, the state of the register is determined by 
a single string of 3 bits, such as "101". This is usually expressed 
by saying that the register contains a single string of 3 bits. A 
quantum computer, on the other hand, can be in a state which is a 
mixture of all the classically allowed states. The particular state is 
determined by 8 complex numbers. In quantum mechanics 
notation we would write: 

 

where a, b, c, d, e, f, g, and h are complex. Let us consider a 
particular example: 

State Amplitude Probability 
* (α+i β) (|α|2+|β|2) 

000 a = 0.37 + i 
0.04 0.14 

001 b = 0.35 + i 
0.43 0.31 

010 c = 0.09 + i 
0.31 0.10 

011 d = 0.30 + i 
0.30 0.18 

100 e = 0.11 + i 
0.18 0.04 

101 f = 0.40 + i 
0.01 0.16 

110 g = 0.09 + i 
0.12 0.02 

111 h = 0.15 + i 
0.16 0.05 
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http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Complex_numbers
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For an n qubit quantum register, this table would have had 
2n rows; for n=300, this is roughly 1090, more rows than there are 
atoms in the known universe. Note that these values are not all 
independent, since the probability constraint must be met. The 
representation is also non-unique, since there is no way to 
physically distinguish between this quantum register and a similar 
one where all of the amplitudes have been multiplied by the same 
phase such as 1, i, or in general any number on the complex unit 
circle. One can show the dimension of the set of states of an n 
qubit register is 2n+1 − 2. 

The first column shows all classically allowed states for 
three bits. Whereas a classical computer can hold only one such 
pattern at a time, a quantum computer can be in a superposition 
state of all 8 patterns. The second column shows the "amplitude" 
for each of the 8 states. These 8 complex numbers are a snapshot 
of the register at a given time. In this sense, a 3-qubit quantum 
computer has far more memory than a 3-bit classical computer 
because it can simultaneously represent all possible states of the 
classical computer. 

When the qubit is measured, it is projected onto one of the 
classically allowed states. The absolute value squared of the 
amplitude of each classical state gives the probability that the 
qubit will be measured in that state. Looking at the table, the 
third column gives the probability for measuring each possible 
register configuration. In this example, there is a 14% chance that 
the returned string will be "000", a 31% chance it will be "001", 
and so on. Each complex number (α+βi) is called an (complex 
valued) amplitude, and each probability (|α|2+|β|2) is the absolute 
square of the amplitude, because it equals |α+ βi|2. The 
probabilities must sum to 1.[3,4] 

http://en.wikipedia.org/wiki/Quantum_register
http://en.wikipedia.org/wiki/Known_universe
http://en.wikipedia.org/wiki/Phase_(waves)
http://en.wikipedia.org/wiki/Unit_circle
http://en.wikipedia.org/wiki/Unit_circle
http://en.wikipedia.org/wiki/Dimension
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5. Quantum Key Polarization  
A photon's polarization state can be modeled by a unit 

vector pointing in the appropriate direction. Any arbitrary 
polarization can be expressed as a linear combination a| > + b| > 
of the two basis vectors    | > (horizontal polarization) and | > 
(vertical polarization). 

Since, there are only interested in the direction of the 
polarization (the notion of “magnitude” is not meaningful), the 
state vector will be a unit vector, i.e., |a|2 + |b|2 =1.  In general, the 
polarization of a photon can be expressed as a| > + b| > where a 
and b are complex numbers such that   |a|2 + |b|2 =1. Note, the 
choice of orthonormal basis is completely arbitrary: any two 
orthogonal unit vectors will do (e.g. {| >| >}). 

The measurement postulate of quantum mechanics states 
that each measurement has an associated orthonormal basis with 
respect to which the measurement projects the quantum state. For 
example, the probability that ψ = a| > + b| > is measured as | > 
is |a|2 and the probability that ψ is measured as | > is |b|2. As 
measurements are always made with respect to an orthonormal 
basis, all bases will be assumed to be orthonormal. Note that 
different measuring devices have different associated bases. 

Furthermore, measurement of the quantum state will 
change the state to the result of the measurement. That is, if 
measurement of ψ = a| >+b| > results in | >, then the state ψ 
changes to | > and if the state is measured again with respect to 
the same basis will return | > with probability 1. Thus, unless the 
original state happened to be one of the basis vectors, 
measurement will change that state, and it is not possible to know 
what the original state [6, 7]. 
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6. Quantum Complexity Measurement 
Measurement of one or more particles in a quantum 

system results in a projection of the state of the system prior to 

measurement onto the subspace of the state space compatible with 

the measured values. The amplitude of the projection is then 

rescaled so that the resulting state vector has length one. The 

probability that the result of the measurement is a given value is 

the sum of the squares of the absolute values of the amplitudes of 

all components compatible with that value of the measurement. 

Let us look at an example of measurement in a two qubit 

system. From now on, unless otherwise specified all measurements 

will be assumed to be measurements of individual qubits with 

respect to the basis {|0>, ket 1}. Any state of a two qubit system 

can be expressed as a|00>+ b|01>+ C|10>+ d|11>. where a, b, C, 

and d, are complex numbers such that |a|2  + |b|2  + |C|2  + |d|2  = 1. 

When the first qubit is measured with respect to the basis {|0>, ket 

1}, the probability that the result is |0> is |a|2 + |b|2. Furthermore, 

if the measurement gives the first qubit as |0>, the state is 

projected onto the subspace compatible with the measurement, 

the subspace spanned by |00> and |01>. 
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 The result of this projection is a|00> + b|01>. To get the 

state of the system after the measurement, renormalize so that the 

total probability is 1:  
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Any measurement of the first bit will yield |0> regardless of 

whether the second bit was measured. Similarly, the second bit 

has a fifty-fifty chance of being measured as |0> regardless of 

whether the first bit was measured or not. Note that 

entanglement, in the sense that measurement of one particle has 

an effect on measurements of another particle, is equivalent to our 

previous definition of entangled states [6, 4, 9].  

7. Classical Key Exchange System  

In asymmetric or two-key cryptosystems the enciphering 
and deciphering keys differ in such a way that at least one key is 
computationally infeasible to determine from the other. Thus one 
of the transformations Ek or DA can be revealed without 
endangering the other. 

Secrecy and authenticity are provided by protecting the 
separate transformations, Dk for secrecy and Ek for authenticity. 
Illustrates how this principle can be applied to databases, where 
some users have read-writer authority to the database, while other 
users have read authority only. Users with read-write authority 
are given both Dk and Ek, so they can decipher data stored in the 
data base or encipher new data to update the database. 

 56
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If Ek cannot be determined from Dk users with read-only 
authority can be given Dk so they can decipher the data but 
cannot update it. Thus Dk is like a read-key, while Ek is like a 
write-key (more precisely the deciphering key describing Dk is the 
read-key and the enciphering key describing Ek the write-key). 

The concept of two-key cryptosystem was introduced by 
Differ and Hellman in 1976. They proposed a new method of 
encryption called public-key encryption where in each user has 
both a public and private key, and two users can communicate 
knowing only each other's public keys. 

In a public-key system each user A has a public 
enciphering transformation EA which may be registered with a 
public directory, and a private deciphering transformation DA, 
which is known only to that user. The private transformation DA 
is described by a private key, and the public transformation DA is 
described by a private key, and the public transformation EA by a 
public key derived from the private key by a one-way 
transformation. It must be computationally infeasible to 
determine DA from EA (or even to find a transformation 
equivalent to DA). 

In a public-key system secrecy and authenticity are 
provided by the separate transformations. Suppose user A wishes 
to send a message M to another user B. If A knows B's public 
transformation EB, A can to B in secrecy by sending the ciphertext 
C = EB (M). On receipt B deciphers C using B's private 
transformation DB, getting. 

For authenticity M must be transformed by A's own 
private transformation DA. Ignoring secrecy for the moment, A 
sends C = DA (M) to B. On receipt, B uses A's public 
transformation EA to compute EA(C) = EA (DA (M)) = M.[8]  
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8. Quantum Key Exchange System 

In such systems, public key cryptographic mechanisms are 
used to provide the authentic channel needed for quantum key 
exchange. The key exchange sub-system, and hence the overall 
communications system, will be no more secure than the public 
key authentication mechanism on which it is based. Moreover, 
any system using quantum key exchange requires a quantum 
channel (e.g., an optical fiber) between the communicating parties. 

Naturally, such a system would not resist active attacks 
subsequent to private key compromise. It should be mentioned 
that there exist proposals for quantum public key protocols, 
where the quantum state of a string of qubits (quantum bits) is 
used as a key. Storage, distribution and manipulation of these 
quantum keys, however, require quantum information processing 
capabilities beyond the reach of current technology.  

   This system is merely a method for exchanging keys; no 
messages are involved. The both side in the first publicly choose a 
finite field |Fq>. Then they publicly choose an element |g> ∈ |Fq> 
to serve as their “base element” (|g> is preferably, but not 
necessarily the generator of the group of elements on |Fq>). It is a 
generator of the key. To generate a key, one side chooses a 
random integer |a> of order of magnitude |q> and keeps it secret, 
then computes |g a> mod |q> ∈ |Fq>, and makes that public. 
Another side chooses his own secret random integer b and makes 
public |g b> mod |q> ∈ |Fq>. The secret key is then gab mod q ∈ Fq>. 
Both them can compute this key. For example, one knows |gb>, 
(public knowledge) and another own secret |a>. and use it for 
further secure communication. On the other hand, only knows 
|g>,, |ga> and |gb>, (finding |a> knowing |g> and |gb>), there is no 
way for him to compute |gab> only knowing |ga> and |gb>. 
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9. Quantum Key Exchange Algorithm  
1: Base Element 

Step1.1: Sender (A) and Receiver (B) publicly choose a finite 

field |Fq>.  

Step1.2: They publicly choose a random element |g> ∈ |Fq> 

such that |g> generates a large subgroup of |Fq>, preferably of 

the same order as that of |Fq> itself. 

2: Sender Key generation 

Step2.1: Sender (A) chooses a secret random integer a and 

Convert the a chosen number into dirac representation (quantum 

representation). 

                           a = ⎥ a1, a2  , . . . . . . , an〉   

Step2.2: Sender computes |g>|a> ∈  |Fq>.  
 

3: Receiver Key generation 

Step3.1: Receiver (B) chooses a secret random integer b and 

Convert the b chosen number into dirac representation (quantum 

representation). 

                             b = ⎥ b1, b2  , . . . . . . , bn〉   

Step3.2: Receiver computes |g>|b> ∈  |Fq>.  

4: Public Key and Secret Key 

Step4.1: Make |ga> and |gb> public and keep |a> and |b> secret.  

Step4.2: Calculation of the secret key |gab>. 

5: Secret Key 

Step5.1: Receiver computes the secret key |gba> = |gb>|a>. 



Samer Saeed Essa                                                                                                . Dr  

 60

Step5.2: Sender computes the secret key |gab> = |ga>|b>. 

6: Finally 

Step 6.1: Final there are two secret keys in both of sender 

(|gab> = |ga>|b>) and receiver (|gba> = |gb>|a>). 
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Conclusions 
1. In this paper introduces the quantum computation 

principles and quantum key exchange that serve in data 

security and cryptography.  

2. Our quantum key algorithm which is more complex in the 

degree of computational complexity of implementation that 

serves in security than traditional key exchange algorithm.  

3. To solve the problems of various implementations in the  

quantum algorithm methods to be ready in case of building 

the quantum computer. 

4. Convert all old, simple and classical algorithms to 

quantum algorithms and to reuse them as strong 

algorithms toward high secrecy degree. 

5. This algorithm is suitable implementation in quantum 

computer and also is suitable implementation with more 

complexes in classical or traditional computer. 
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  الكَميِخوارزمية تبادلِ المفتاحِ  بإستعمال الحسابِ
  * سامر سعيد عيسى.د

 
 المستخلص

  

الحساب الكَمي حقل جديد الذي يجسر العديد مِن المجالاتِ، بضمن ذلك الفيزياءِ 

علم مجموعةِ، الهندسة الكهربائية، عِلْم حاسبات، والوظيفي ونظرية الالنظريةِ، تحليل 

 الحسابِ الكَميِ التي تَخْدم لتَعزيز أساس أَن تَستكشفَ ا البحثِإن هدفَ هذ. كَميالتشفيرال

فين وبناءوذلك من خلال)حاسبات( خوارزميةً للمفاتيحِ في الإتصالِ الغير آمنِ بين مضي 

 بأتجاهضمانِ و الكَمي التي لَها إلى حدٍ كبير حِماية مفتاحِتَطبيق خوارزميةِ تبادلِ ال

 الكَمي أكثر تعقيداً مِن خوارزميةِ تبادلِ لمفتاح خوارزمية تبادلِ الأنالتعقيدِ الحسابيِ 

 أيضاً، هذه الخوارزميةِ . في الحاسوبِ الكلاسيكيِ)أو تنفذ (إذا تُؤدي  الكلاسيكيةِمفتاحال

إذا سيكُون متوفر  تُزود القدرةَ للإداء في الحاسوبِ الكَميِ) المفتاحِخوارزمية تبادلِ (

  .مستقبلاً

  

 

 
________________________________________________  

كلية المنصور الجامعة/قسم هندسة البرمجيات*  
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