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Abstract: Since 1980's, word-prediction systems have been used as
writing aids. They were used by people with physical incompetence to
reduce the amount of effort needed to enter text, but later they were found
to be also helpful to people with learning or language weakness, such as
difficulties in speaking, spelling, or grammar. The purpose of this paper is
to propose an auto-completing system built using multidimensional nesting
matrices to build a database that store the previously learned words, and
use that database to find all the words that starts with a given two letters.
Where, it's taken 5.343 seconds to look for word which starts with existing
first two letters, and it has taken 2.2568 seconds to look for word which
start with two nonexistent letters in the database.
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1. Introduction

The storing of activity traces has been assistant the re-visitation of the
page which can be considered as a convenience features for the Web
browsers. These features has been realized a variety of context [1]. The
set of suggestions that has been displayed to the user for the purpose of
rounding what is looking for; this is the goal of the auto-completion. The
small sufficiently selection has been conveyed to the use, when the group
of potential suggestions is too large [2].

The auto-completion provided by manyweb browsers, e-mail
programs, search  engine interfaces, source code editors, database
query tools, word processors, and command line interpreters [3]. For these
kinds of applications, can easily achieve fast response times by two binary
or B-tree searches in the (pre)sorted list of candidate strings [4]. Auto-
completing is usually a services provided to the users during their search.
Each time the user enter a character to the search box the auto-complete
mechanism suggested the most matching candidates based on the
entered characters. First and based on the prefix matching a filtering
operation is performed by using data structure mechanism, and then
based on the expected probability of the suggestions that match the prefix,
a fetch operation is performed. The probability values are calculated
approximately based on the past frequencies [5].

Autocomplete has been used by the programmers to reduce the task of
remembering tiring lists of APIs. Autocomplete has a point of failure: when
a programmer expects a certain method or function name to exist, and it
does not, the auto-completion list simply stops working [6]. To reduce the
amount of user input, the AutoComplete is a feature that provides a list of
suggested items that closely match what the user has typed most often or
recently. It speeds up human-computer interactions in applications and
reduces the number of keystrokes. The AutoComplete is only applied
when there are text fields and the word being typed can be predicted [7].

2. Related Work

Several methods are used in various application for the propose of
auto-completion. Query auto-completion (QAC) is an amazing feature in
the modern search engines. Each time the user entered a new character
into the search box the query elects list is updated. Queries prefixes
usually tend to be short and vague, and the existing models, mostly rely
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on the past matching candidates for ranking [5]. Another method is the
Keyword programming which is a new technique that reduces the need to
remember all the details of syntax in the programming language and APIs,
by interprets a group of keywords provided by the user into a valid
expression. The keywords act as a query that searches the space of
expressions that are valid in a given context. Prior work has demonstrated
the feasibility and merit of this approach in limited domains [8]. Several
studies investigating the auto-compilation, [1] have used a mixed
methodology approach to study the occasional information that found in
web browsers. Then, [2] was identified a number of key design dimensions
of auto-completion interface components. It presents an entirely
configurable architecture, which can be used to configure auto-completion
components to the desired point in the design space. In the context, the
contributions of the [9] are a classification schema for CTS approaches,
identification of their deficiencies and then discussion of several important
features. Whilst, [6] describes automatic function definition (AFD), which
can succeed where autocomplete fails. A preprocessing, graph mining,
and hashing for generating the suggestion list is proposed by [10]. While,
[5] presents a supervised framework for personalizing auto-completion
ranking. Test results show that the proposed method significantly
outperforms existing document specific autocomplete search techniques.

3. The Proposed Auto-completion Mechanism

The proposed system is contains two stages, the training stage and a
testing stage. In the training stage, a database of words is entered into the
auto-completion algorithm and the following steps will be performed for
each entered new word:

Step 1: Convert each word into its equivalent code that represents the
position of each letter in the alphabet. (Like; a=1, b=2 and so on).

Step 2: Create a multidimensional array named “Link” of size (M, M),
where M is the maximum number of possible links based on the used
alphabet (26- for English alphabet letters).

Step 3: Check all the words of the training database to find the value of
the third dimension of the “Link” array, which represents the maximum
number of links found in the database. To find the number of links in each
word of the training database is checked and every two consecutive letters
are connected by a link. The maximum number of links represents the
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longest word in the training database-1. (Example on that is shown in

figure 1)
I BOOK f——

Figure (1): Coding and Links of word “Book."
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Linkl  Link2 Link3

The indices of the “Link” array are taken from each coded word as
shown in figure 2.

Column Number Column Number
. . d .
1° Dimension 2" Dimension

2 15

) - o

Link Number
3" Dimension

Figure (2): Indices of “Link” array in the
proposed system based on “Book” word.

By performing these three steps on the training database, a
multidimensional matrix is created which contains the sequence of the
words used in the training database. As shown in figure 3.
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Figure (3): The Creation of the Suggested System matrix
based on the indices taken from the letters numbers of
“Book” word.

The overall design is shown in figure 4, where N (longest world letters-
1 (45-1=44 links [11]) is the maximum number of links found in the training
words database.

'_-*' Links. | 1 |18 M
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1 Link Mo 2

Lémk N 1

Figure (4): overall design architecture of the proposed
system
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In the proposed system it is necessary to perform the training stage
before starting using the actual system, and the time required for the
training stage is depending on the number of the words that are used
(increasing the number of words cause increasing the time of the training),
and hence the training stage is performed before the actual usage of the
system, and the training stage is performed offline, so the time required for
it is irrelevant. The most important time is the time required to find the
word that’s its two letters is inserted by the user either it's existed in the
database or not.

A flow chart for the proposed system is shown in the figure 5.

Training Stage

Database of training words

y

For each word, convert each letter into its
equivalent sequence in the alphabet

h

Find the number of links in that word

MNumber of links = number of letters - 1

Y
Create multidimensional array based on the indices that found

Insert the sequence of the training words into the previously created

multidimensional array
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Testing Stage |

A sk the user to insert the first two letters
of the required word

|

Comnvert each letter into its equivalent sequence
in the alphabet

h

Check all the letters combination in the first link of the
training multidimensional array

Daozs the latter
combination exist

YES NO

in the training
databazaT

W w
. Display a message that
Display all the words indicate that thers is no word
that start in thess two in the training database that
letters start with these two letters

Figure (5): a flowchart of the proposed system that
includes the training and testing stages.

4. The Proposed System Results

The proposed system has been built with 2000 words as database for
training stage. The system required 5.343 seconds to search the data
base for existing first two letters, and required 2.2568 seconds to search
the database for nonexistent first two letters. It is worth mentioning that the
time required to search the database for nonexistent first two letters is less
than the time required to search for existing first two letters because the
system doesn’t search the entire database, its search only the first link of
all array which taking significantly less time. Figure (6), shows the
relationship between the number of words in a database and search time
for all combinations with a starting two letters, as shown in the figure
increase the number of words cause the increase in time required to
search for all the combinations of the first two letters. Table (1) shows the
required time to search for the combination of any two letters in the testing
stage.
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5. Conclusion

By running the program for all possible first two letters in the alphabet,
the following concluded can be seen; The suggested system is the
simplest type of the word auto-completing, and the main purpose of the
system is to use multidimensional nested matrices. Also, the time required
to find the words start with any two letters is directly proportional with the
number of words in the training database. Whilst the results could be
changes according to the database size and speed of operation
processor. The concept of multidimentional nested matrices and using a
previously trained system can be used for many classification applications,
including linking diseases to a spesific symptoms and other systems that
required linking information to get a specific results.
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Figure (6): The relation between the number of
words and search time for all combination with
two start letters.
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Table 1: Search time/number for each word
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