Elaf Sabah Abbas

Words Autocompleting Using Nesting Matrices

Elaf Sabah Abbas*,M.Sc.(Asst. Lecturer)

Abstract: Since 1980's, word-prediction systems have been used as
writing aids. They were used by people with physical incompetence to
reduce the amount of effort needed to enter text, but later they were found
to be also helpful to people with learning or language weakness, such as
difficulties in speaking, spelling, or grammar. The purpose of this paper is
to propose an auto-completing system built using multidimensional nesting
matrices to build a database that store the previously learned words, and
use that database to find all the words that starts with a given two letters.
Where, it's taken 5.343 seconds to look for word which starts with existing
first two letters, and it has taken 2.2568 seconds to look for word which
start with two nonexistent letters in the database.

Keywords: Web browser, query auto-completion, autosuggest, Interface
design.

* Al-Mansour University College, Communication Eng. Department, Baghdad, Iraq

-114 -

Al-Mansour Journal/ Issue (32) 2019 (32) 2=l /) soaiall dlsa

1. Introduction

The storing of activity traces has been assistant the re-visitation of the
page which can be considered as a convenience features for the Web
browsers. These features has been realized a variety of context [1]. The
set of suggestions that has been displayed to the user for the purpose of
rounding what is looking for; this is the goal of the auto-completion. The
small sufficiently selection has been conveyed to the use, when the group
of potential suggestions is too large [2].

The auto-completion provided by manyweb browsers, e-mail
programs, search engine interfaces, source code editors, database
query tools, word processors, and command line interpreters [3]. For these
kinds of applications, can easily achieve fast response times by two binary
or B-tree searches in the (pre)sorted list of candidate strings [4]. Auto-
completing is usually a services provided to the users during their search.
Each time the user enter a character to the search box the auto-complete
mechanism suggested the most matching candidates based on the
entered characters. First and based on the prefix matching a filtering
operation is performed by using data structure mechanism, and then
based on the expected probability of the suggestions that match the prefix,
a fetch operation is performed. The probability values are calculated
approximately based on the past frequencies [5].

Autocomplete has been used by the programmers to reduce the task of
remembering tiring lists of APIs. Autocomplete has a point of failure: when
a programmer expects a certain method or function name to exist, and it
does not, the auto-completion list simply stops working [6]. To reduce the
amount of user input, the AutoComplete is a feature that provides a list of
suggested items that closely match what the user has typed most often or
recently. It speeds up human-computer interactions in applications and
reduces the number of keystrokes. The AutoComplete is only applied
when there are text fields and the word being typed can be predicted [7].

2. Related Work

Several methods are used in various application for the propose of
auto-completion. Query auto-completion (QAC) is an amazing feature in
the modern search engines. Each time the user entered a new character
into the search box the query elects list is updated. Queries prefixes
usually tend to be short and vague, and the existing models, mostly rely

-115-

https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/E-mail_program
https://en.wikipedia.org/wiki/E-mail_program
https://en.wikipedia.org/wiki/Search_engine_technology
https://en.wikipedia.org/wiki/Source_code_editor
https://en.wikipedia.org/wiki/Database_query
https://en.wikipedia.org/wiki/Database_query
https://en.wikipedia.org/wiki/Word_processor
https://en.wikipedia.org/wiki/Command_line_interpreter

Elaf Sabah Abbas

on the past matching candidates for ranking [5]. Another method is the
Keyword programming which is a new technique that reduces the need to
remember all the details of syntax in the programming language and APIs,
by interprets a group of keywords provided by the user into a valid
expression. The keywords act as a query that searches the space of
expressions that are valid in a given context. Prior work has demonstrated
the feasibility and merit of this approach in limited domains [8]. Several
studies investigating the auto-compilation, [1] have used a mixed
methodology approach to study the occasional information that found in
web browsers. Then, [2] was identified a number of key design dimensions
of auto-completion interface components. It presents an entirely
configurable architecture, which can be used to configure auto-completion
components to the desired point in the design space. In the context, the
contributions of the [9] are a classification schema for CTS approaches,
identification of their deficiencies and then discussion of several important
features. Whilst, [6] describes automatic function definition (AFD), which
can succeed where autocomplete fails. A preprocessing, graph mining,
and hashing for generating the suggestion list is proposed by [10]. While,
[5] presents a supervised framework for personalizing auto-completion
ranking. Test results show that the proposed method significantly
outperforms existing document specific autocomplete search techniques.

3. The Proposed Auto-completion Mechanism

The proposed system is contains two stages, the training stage and a
testing stage. In the training stage, a database of words is entered into the
auto-completion algorithm and the following steps will be performed for
each entered new word:

Step 1: Convert each word into its equivalent code that represents the
position of each letter in the alphabet. (Like; a=1, b=2 and so on).

Step 2: Create a multidimensional array named “Link” of size (M, M),
where M is the maximum number of possible links based on the used
alphabet (26- for English alphabet letters).

Step 3: Check all the words of the training database to find the value of
the third dimension of the “Link” array, which represents the maximum
number of links found in the database. To find the number of links in each
word of the training database is checked and every two consecutive letters
are connected by a link. The maximum number of links represents the

- 116 -

Al-Mansour Journal/ Issue (32) 2019 (32) 2=l /) soaiall dlsa

longest word in the training database-1. (Example on that is shown in

figure 1)
I BOOK f——

Figure (1): Coding and Links of word “Book."

2 15 15 11

Linkl Link2 Link3

The indices of the “Link” array are taken from each coded word as
shown in figure 2.

Column Number Column Number
. . d .
1° Dimension 2" Dimension

2 15

) - o

Link Number
3" Dimension

Figure (2): Indices of “Link” array in the
proposed system based on “Book” word.

By performing these three steps on the training database, a
multidimensional matrix is created which contains the sequence of the
words used in the training database. As shown in figure 3.

-117 -

Elaf Sabah Abbas

1 ()

1 Link No.2

1 Link No.2

5| [

Link N1

Figure (3): The Creation of the Suggested System matrix
based on the indices taken from the letters numbers of
“Book” word.

The overall design is shown in figure 4, where N (longest world letters-
1 (45-1=44 links [11]) is the maximum number of links found in the training
words database.

'_-*' Links. | 1 |18 M

= 0]

Unks [1] 2 . M

1 Link Mo 2

Lémk N 1

Figure (4): overall design architecture of the proposed
system

- 118 -

Al-Mansour Journal/ Issue (32) 2019 (32) 2=l /) soaiall dlsa

In the proposed system it is necessary to perform the training stage
before starting using the actual system, and the time required for the
training stage is depending on the number of the words that are used
(increasing the number of words cause increasing the time of the training),
and hence the training stage is performed before the actual usage of the
system, and the training stage is performed offline, so the time required for
it is irrelevant. The most important time is the time required to find the
word that’s its two letters is inserted by the user either it's existed in the
database or not.

A flow chart for the proposed system is shown in the figure 5.

Training Stage

Database of training words

y

For each word, convert each letter into its
equivalent sequence in the alphabet

h

Find the number of links in that word

MNumber of links = number of letters - 1

Y
Create multidimensional array based on the indices that found

Insert the sequence of the training words into the previously created

multidimensional array

- 119 -

Elaf Sabah Abbas

Testing Stage |

A sk the user to insert the first two letters
of the required word

|

Comnvert each letter into its equivalent sequence
in the alphabet

h

Check all the letters combination in the first link of the
training multidimensional array

Daozs the latter
combination exist

YES NO

in the training
databazaT

W w
. Display a message that
Display all the words indicate that thers is no word
that start in thess two in the training database that
letters start with these two letters

Figure (5): a flowchart of the proposed system that
includes the training and testing stages.

4. The Proposed System Results

The proposed system has been built with 2000 words as database for
training stage. The system required 5.343 seconds to search the data
base for existing first two letters, and required 2.2568 seconds to search
the database for nonexistent first two letters. It is worth mentioning that the
time required to search the database for nonexistent first two letters is less
than the time required to search for existing first two letters because the
system doesn’t search the entire database, its search only the first link of
all array which taking significantly less time. Figure (6), shows the
relationship between the number of words in a database and search time
for all combinations with a starting two letters, as shown in the figure
increase the number of words cause the increase in time required to
search for all the combinations of the first two letters. Table (1) shows the
required time to search for the combination of any two letters in the testing
stage.

- 120 -

Al-Mansour Journal/ Issue (32) 2019 (32) 2=l /) soaiall dlsa

5. Conclusion

By running the program for all possible first two letters in the alphabet,
the following concluded can be seen; The suggested system is the
simplest type of the word auto-completing, and the main purpose of the
system is to use multidimensional nested matrices. Also, the time required
to find the words start with any two letters is directly proportional with the
number of words in the training database. Whilst the results could be
changes according to the database size and speed of operation
processor. The concept of multidimentional nested matrices and using a
previously trained system can be used for many classification applications,
including linking diseases to a spesific symptoms and other systems that
required linking information to get a specific results.

201

Time in Second
=

+
8 e
-

i +

o &
et
4 o+
=

A

|

o3
0

| | | | | | | |
0 10 20 30 40 50 60 70 80
Number of Words

Figure (6): The relation between the number of
words and search time for all combination with
two start letters.

-121 -

Elaf Sabah Abbas

Table 1: Search time/number for each word

||

b

4

d

f

H

h

i

j

k

h-l:h.!-i:-—'-“ —-_ﬂ-nﬁzla—!"‘—'—'zrﬂ'l — R [S S] [= ol 1]

04727
f.7281
6.8706
33334

8.2912
3.1596
62783
04317
0.7407
04370
48118
14573
21280
04179
A.1603
0.4696
40218
6.2471
27470
HEER)
17435
5.2110
04523
07336
04417

25813
04759
0424
AR
05243
03534
04853
04278
04400
04317
04318
04267
04344
04142
14517
05335
04503
04557
04670
04368
04517
04723
04540
04453
04
04405

3.7882
04243
04115
04173
05533
0543
0.6517
04532
0.7555
04333
0433
04313
04175
05548
04754
04ms
05333
04524
40911
04533
05133
04285
04210
04561
04751
04480

jg%
0414
0415
04158
180
0473
0458
04810
1335
04317
0725
04w
a4
0423
04358
04148
0335
04305
04625
04273
0418
e
0448
04308
0410
0454

04511 24889 367
83328 04262 04085
20125 04179 05993

124768 0435 04304

24753
16750
21404
47118
Q4677
24630
10029
14
601
58852
PR
56385
24619

17.12% Q4411 04434

82358
43998
04n1
16582
47997
PERGE
174905
Q7419

20135
044933
0.4863
04283
07205
06108
04415
04154
[A45nd
04303
23151
T
0A43

04560
04711
0433
0437
04503
04213
04261
04612

07716
057
04380
04218
0433
0505
A
0423
04857
04808
04314
04235
04365

04548
0430
o
0428
04583
e
04175
04685

02403 1271 oAla
Q4057 214523 Q4091
57693 17873 04060
0Alll 480% 04452

14634
05081
04605
14345
0437
06380
04233
2431
Q4807
(15455
04435
e
04357
R
aa874
16588
04345
1433
47562
144
04283
04575

0.7513
EREEE
13525
24358
04512
05433
2271
S84
6.0357
1.1508
07028
29243
04837

g0
55878
2.7533
04475
24515
38314
04613
0.6639
04354

04360
rAan
04587
0418
0428
0.45%
045
LANE
[y
048
a4
0.68.28
04500
PR
N
04691
04540
0507
0445
04331
0441
418

05138
04083
04083

4.6865
3019
45043

0433 048

i
05134
0471
04423
04223
05015
04253
nalal
nassy
04715
04313
05855
04608

2334
38843
15435
04415
07357
04529
04311
04155
HERCE
04161
0.7309
386
04382

04375 047

14735
04781
04405
oAl
naus
0435
04405
0474

24615
04m9
0434
04534
HEECH]
04563
04847
04487

-122 -

Al-Mansour Journal/ Issue (32) 2019 (32) 222l /) soaiall dlaa

m n o P q r 5 t u v W X
13147 52483 04159 28087 04488 38915 28017 27643 12853 15877 14645 05831
04083 04108 64271 041530 04047 54740 04180 04115 43955 04113 05018 043581
04094 04313 244073 04158 04114 45608 04536 04592 44872 04206 04310 04157
04542 0.5316 45348 06484 046322 50502 09207 049376 29821 05283 051656 04971
16880 46305 04264 04326 07069 04284 159353 04241 04258 29916 0435 1040560
04406 04655 70633 048456 04628 48447 05737 05843 45084 05385 05665 05417
04579 04205 22ME 04545 04621 54223 04547 04570 19885 04305 04310 04304
04231 04721 55426 04368 04221 04283 04570 04406 27500 044674 04442 04355
30092 91192 04765 04217 04355 07335 09230 06844 04223 04351 04717 04355
04345 06027 20272 04358 04203 04302 04282 04256 139425 05576 05061 04259
04334 20280 04351 04236 04313 04305 04336 04343 04259 04326 05055 04501
04225 04455 62972 04243 04250 04297 04200 04124 14734 04279 04501 04341
04435 04290 60287 0.5083 04954 04224 04206 04344 23696 04213 04605 04158
04238 04915 48354 04210 04231 04338 04155 05525 1.5688 04123 04454 05430
0.7202 18920 04789 28487 04838 22627 04311 048551 14849 09930 12472 04903
04635 05569 78422 04527 04530 145786 0.5591 05844 42701 05491 05061 0.5153
04418 04530 042354 04579 04402 04335 04360 04323 43720 060530 09872 09652
04440 04444 43311 04792 04543 04365 04367 04550 24837 04485 04231 043861
17348 09973 75154 51346 07343 04825 04365 157924 71556 04541 25729 0448
04454 04565 61665 04542 04592 584397 0430 04256 12014 043594 07100 04458
04343 35827 04303 1436 04423 1002 09625 04609 04350 04470 04384 04513
04235 04789 12653 04466 04501 04188 04233 04363 04339 04424 04633 04445
04214 04406 402439 04737 04546 17782 04558 04335 04316 04500 04385 043398
04661 04393 04432 04456 04336 04373 04407 04283 04911 05003 04482 04452
05080 04535 12834 04328 04442 04705 04501 04307 04561 04977 04508 04342
04383 04480 04726 09834 04331 0532 04431 04520 04490 04303 06588 04753

D az8339 LN =
D.FE34a Oaras
D aza= 0 =0
D511 0 51149
oD.Fas21 D.5155
o.54149 o523
0. Aa555 085405
Daz95 D azy s
D457 [Ji =
D.az=27 0. 8ars
D a3 [jor. e]
0. a4a58 O Aa7=0
DEe3935 0. Aa1585
0.4a19= L o
o a4a9a OAandd
D.5318 D_S1LOF
08731 O 80997
0 _Aa7F30 033191
1 25449 L
L e L o
0.a531 0 Aazss
0.4a315 L
D a3587 [l =
03455 03550
D a8=9a 0 A58
0 _Aa3.07F 0 a5

- 123 -

Elaf Sabah Abbas

References

[1]

[2]

(3]
[4]
[5]

[6]

[7]

(8]
(9]

KH_PrivateBits_CSCW_demo_final, Kirstie Hawkey and Kori M. Inkpen,
"PrivateBits: Managing Visual Privacy in the Web Browser", CSCW '06,
November 4-8, 2006, Banff, Alberta, Canada.

Michiel Hildebrand, Jacco van Ossenbruggen and Alia Amin, "The Design
Space of a Configurable Autocompletion Component", April 21-25, 2008,
Beijing, China.

https://en.wikipedia.org/wiki/Autocomplete.

Type Less, Find More: Fast Autocompletion Search with a Succinct Index

Shokouhi-Personalized QAC Milad Shokouhi, "Learning to Personalize
Query Auto-Completion”, SIGIR’13, ACM 978-1-4503-2034-4/13/07, Dublin,
Ireland, July 28—August 1, 2013.

Kyle I. Murray and Jeffrey P. Bigham, "Beyond Autocomplete: Automatic
Function Definition", IEEE Symposium on Visual Languages and Human-
Centric Computing: Posters and Demos, 2011.

Ming-Jui Huang, Tzao-Lin Lee, "An integrated software processor with
autofilling out web forms", 13th Computer Systems Architecture Conference,
ACSAC. Asia-Pacific, Page(s) 1 — 8, 4-6 Aug. 2008.

Greg Little and Robert C. Miller, "Keyword programming in Java", March
2009, Volume 16, Issue 1, pp 37-71

Thomas Goldschmidt, Steffen Becker, and Axel Uhl, "Classification of
Concrete Textual Syntax Mapping Approaches",Springer-Verlag Berlin
Heidelberg 2008.

[10] Neeraj Agrawal Mrutyunjaya Swain, "Auto Complete Using Graph Mining: A

Different Approach”, Southeastcon, Proceedings of IEEE, ISSN: 1091-0050,
Page(s): 268 — 271, Date of Conference 17-20 March 2011.

[11] Oxford English Dictionary Online.

-124 -

https://en.wikipedia.org/wiki/Autocomplete
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4610266
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4610266
http://link.springer.com.tiger.sempertool.dk/search?facet-author=%22Greg+Little%22
http://link.springer.com.tiger.sempertool.dk/search?facet-author=%22Robert+C.+Miller%22
http://link.springer.com.tiger.sempertool.dk/journal/10515/16/1/page/1
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5746658
http://www.oxforddictionaries.com/definition/english/pneumonoultramicroscopicsilicovolcanoconiosis?q=pneumonoultramicroscopicsilicovolcanoconiosis+

Al-Mansour Journal/ Issue (32) 2019 (32) 2=l /) soaiall dlsa

35l il ghiaal) pladiuly clalcll AN Jlasy)

ke glua) a0

O shal JRG Lealadin o3 385 bl J3) o) Aia Lgaladind o8 CulalSlly gail) aalasl s oaldial)
Lol sabe Ll aa g Ba (Sl il JRaY 25 agall jlaie B8l aledl) (aldlY) J3
5 alal 8 JSLie (ysen s ol GaliiY) Jie 4l JSWED (533) alailly el) Galaid
Gl ghaall o aaiay LT S JlaS) aUas #1581 ga Gl 1 (e Coagll 4zl ae) 68) (ol
& bl oae B alasiul o g ClalSH Gausal) ¢ AN A58 Gliy sael8 elid alifaiall Mlag¥) aaeta
Zadl agls 5,343 o ylsia iy a5 kil 4 Cun A0l 25 (8 ay 105 4dlS () e Cand)
oo Canll 445 2 2568 b ylaie iy 5 il 5 lilll saelE 8 ga se oy J sl s cildlS e

ULl oaelE 3 0 sm e e O a b g S

Aga) sl apaai ¢ SN &1 BY) ¢ G JUSY) aSlainl) a8l sall iaio sdsaliiall cilalsl)

Gall calaky (YLaiY) dutia and daalall) geaiall 48
-125 -

