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On The Solutions Of Quasi – Lyapunov
Operator Equations

Asst.Prof.Dr.. Emad A. Kuffi *

Abstract

In this paper, some theorems are modified to ensure the
existence and uniqueness of the solution for the Quasi –
Lyapunov operator equation.

Also, the range of the Quasi – Lyapunov equation is
studied. As well as, the nature of the solution for the Quasi –
Lyapunov operator equation is studied for special types of
operators.
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(1) Introduction

In this introduction, we give some types of linear operator
equations:
(1) The linear operator equation of the form

WXAXA*  ,             ……………………(1)

Where A and  W are given operators defined on Hilbert
space H, and X is the unknown operator that must be
determined. This linear operator equation is called the
Lyapunov operator equation, or the continuous – time Lyapunov
equation, [3] and [5].

The author in reference [3] studied the necessary and
sufficient conditions for the solvability of this linear operator
equation.

(2)  A special case of the continuous – time Lyapunov operator
equation

WXAAX  ,      ……………………………(2)

Where A and W are known operators defined on a
Hilbert space H , and X is the unknown operator that must be
determined, [3] and [4].

(3)  The linear operator equation of the form

WAXAX *  ,        ……………………..(3)

Where A and W are given operators defined on a Hilbert
space H, and X is the unknown operator that must be
determined, X* is the adjoint of X. These linear operator
equations (2) and (3) are called quasi Lyapunov operator
equations or quasi – continuous – time Lyapunov linear
operator equations.
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(2) The Quasi – Continuous – Time Lyaponov Operator
Equations:

The continuous – time Lyapunov equations, are much
studied because of it’s importance in differential equations and
control theory, [6]. Therefore we devote the studying of the
quasi continuous – time Lyapunov operator equations.
Now, does eq. (2) and eq. (3) have a solution?
If yes, is it unique?

To answer this equation, recall the Sylvester –
Rosenblum theorem, [5].

Sylvester – Rosenblum Theorem (2.1):
If A and B are operators in B(H) such that σ(A)∩σ(B) =

Ф, then AX-XB = Y has a unique solution X fore every operator
Y.

According to the Sylvester – Rosenblum theorem, we
have the following corollary:

Corollary (2.1):
If A is an operator such that σ(A)∩σ(– A ) = Ф, then eq.

(2) has a unique X for every operator W.

Proposition (2.1):
Consider eq. (2), if σ(A)∩σ(– A ) = Ф, then

The operator 









A0
WA

is defined on H 1 H 2 is similar to









A0
0A

.

Proof:
Since σ(A)∩σ(– A ) = Ф. Then by Sylvester – Rosenblum

theorem eq. (2) has a unique solution X, also:
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







10
X1









A0
0A

= 









A0
WA









10
X1

.

But 







10
X1

is invertible so 







A0
0A

is similar to











A0
WA

.

The converse of the above proposition is not true in
general as we see the following example.

Example:
Let H = ℓ 2 (C), that is,

ℓ 2 (C) =








 



Cx,x:...),x,(xX i

1i

2
i21

Define A: H     H by A    ....0,0,,x...,xx 121,  Consider eq. (2),

where W    ....0,,x0,...,xx 121,  Then X = U is A solution of this

equation since     ...,xxUAAU...,xxXAAX 21,21, 
          XW00,,x0,...0,,x0,...0,0,0,...0,0,,xU...,x,x0,A 11121 

.
On the other hand, U is solution of eq. (2) and









10
U1









A0
0A

= 









A0
WA









10
U1

.

Therefore, 









A0
WA

is similar to 







A0
0A

.

Moreover 0 is an eigenvalue of A and X=  ...,,0 2x is the
associated eigenvector.

Therefore, 0  σ(A)∩σ(– A) and hence σ(A)∩σ(– A ) ≠ Ф
.
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(3) The Nature of the solution of Quasi – Continuous – Time
Lyaponov Operator Equations:

In this paper, we study the nature of the solution of eq.
(2) for special types of operators.

Remark (3.1):
If W is self – adjoint operator, and A is any operator, then

eq. (2) may or may not have solution. Moreover, if it has a
solution then it may be non self – adjoint.

This remark can easily be checked in matrices.
Next if A and W are self – adjoint operators, what

condition can one put on A (or W) to ensure the existence of
self – adjoint solution for eq. (2).

The following theorem gives one such condition.

Theorem (3.1):
Let A and W be positive self – adjoint operators.

If  0  σ(A), then the solution X of eq. (2) is self – adjoint.

Proof:
Since 0  σ(A) then it is easy to see that σ(A)∩σ(– A ) =

Ф and hence eq. (2) has a unique solution X by Sylvester –
Rosenblum theorem.
Moreover,
  ** WXAAX  ,

***** WAXXA  ,
Since A and W are self – a joint operators, then

WAXAX **  .

Therefore, *X is also a solution of eq. (2). By the uniqueness of
the solution on gets *XX .

Proposition (3.1):
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If A and W are self – adjoint operators, and the solution
of the eq. (3) exists, then the solution X is a unique.
Proof: Consider

WAXAX *  ,
Since W is self – adjoint operator,

  *** WAXAX  ,

  ****** WAXXA  ,
Since A is self – adjoint operator,

WAXAX *  , Since the solution exists, then X
is a unique.

The following proposition shows that if operators A and
W are skew – adjoint, and the solution of eq. (3) exists then this
solution is unique.

Proposition (3.2):
If A and W are skew – adjoint operators, and solution of

eq. (3) exists, then the solution X is a unique.
Proof:

Consider eq. (3),
WAXAX *  ,

Since W is a skew adjoint operator, so

  *** WAXAX  ,

   ****** WAXXA  ,

    *** WAXXA  ,
Since A and W are skew – adjoint operators, then

WAXAX *  .
Since the solution X exists, then the solution X is a unique.

Remark (3.2):
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If A is a self – adjoint operator and W is a skew – adjoint.
Then the solution X of eq. (3) is not necessarily exists.

Remark (3.3):
If W is a self – adjoint operator and A is any operator,

then the solution X of Eq. (3) is not necessarily self – adjoint
operator.

The following example explains this remark.

Example (3.1):

Consider eq. (3), take 









00
01

WW * , and











03
02

A ,

WAXAX *  .
After simple computations one can gets

*X

2
11

0α
X 





















 ,

Where α is any scalar.

Remark (3.4):
If W is a skew - adjoint and A is any operator, then the

solution X of Eq. (3) is not necessarily exists.

The following example explains this remark.

Example (3.2):
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Consider eq. (3), take 










02
20

W and











03
02

A ,

WAXAX *  .
After simple computations one can gets
1x 2  and 0x 2  which has no solution.

Proposition (3.3):
If A is a compact operator then the eq. (3) is compact.

Proof:
Since A is compact then AX* is also compact.

Since A is compact then XA is also compact.
Since AX and AX* are compact then AX + X*A is compact.
Therefore W is compact.

(4) On the  Range of A :
In this section we study and discuss the range of A ,

 (X) = A (X) = AX+X *A, B(H)X
Where A is a fixed operator in B(H).

It is clear that the map A is a linear map. Also the, map A is
bounded, since.

AXXAAXAXAXAX ***
A 

since *X = X .

Therefore, XA2A  ,

Let 0A2M  , so XMA  . Then A is bounded.
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The following steps shows that Range ( A )* ≠ Range (

A ),

Range ( A )* =   B(H)X,AXAX
**  ,

=  B(H)X,AXXA ***  ,
≠ Range ( A ) .

Also , α Range ( A ) =   B(H)X,AXAXα * 

=     B(H)X,AαXαXA * 
Let 1XαX 
α Range ( A ) =  B(H)X,AXXA 111

* 
= Range (τ A ).

The following remark shows the mapping A is not – a
derivation.
Remark (4.1):

Since A (XY) = A (XY) + (XY) *A

= A(XY) + Y *X*A .
For all  X, Y B(H) ,

And X A (Y) = [AY + Y *A] ,

= XAY + XY *A .
Also, A (X)Y = (AX + X *A)Y  ,

= AXY + X*AY.
Then one can deduce that:

A (XY) ≠ X A (Y) + A (X)Y .
Now the following remark shows the mapping A is also

not *- a derivation.

Remark (4.2):
Since A (X + Y) = A(X + Y) + (X + Y) *A ,
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= AX+AY + X *A + Y*A ,
= AX + X *A + AY + Y *A ,
= A (X) + A (Y).

Now,
X A (X) + A (X)X* = X [AX + X *A] + [AX + X *A] X* ,

= XAX + XX *A + AXX * + X*AX* ,

so A     AXAXX
2*22  ,

and A  2X ≠ X A (X) + A (X)X* .

then A is not *- a derivation.

(5) On the  Range of A (X):
In this section, we study and discuss the range of A ,

where
A = A (X) = AX + XA   , B(H)X

Where A is a fix operator in B(H)).
It is clear that the map A is a linear map. Also, the map A is

bounded, since XMXAAXA  ,

Where 0A2M  . Then A is bounded.

The following steps shows that     Range ( A )*≠ Range
( A ).

Range ( A )* =   B(H)X,XAAX *  ,

=  B(H)X,AXXA ****  ,
≠ Range ( A ).

Also, α Range ( A ) =   B(H)X,XAAXα  ,
=     B(H)X,AαXαXA 

Let αX = 1X
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=  B(H)X,AXAX 111 
= Range ( A ) .

The following remark shows that the mapping A is not
a derivation.

Remark (5.1):
Since A (XY) = A(XY) + (XY)A ,

For all    X, Y B(H) ,
And X A (Y) = X(AY) + X(YA) ,

= XAY + XYA .
Also, A (X)Y = AXY + XAY ,

Then one can deduce that:
A (XY) ≠ X A (Y) + A (X)Y .

Now, the following remark shows that the mapping A is

also not *- a derivation.
Remark (5.2):

Since A (X+Y) = A(X+Y) + (X+Y)A ,
= AX +AY + XA + YA ,
= (AX + XA) + (AY + YA) ,
= A (X) + A (Y) .

Now,
X A (X) + A (X)X* = X[AX +XA] + [AX + XA]X *.

= XAX + X 2A + AXX * + XAX *.
So, A (X 2 ) = (AX 2+ X 2A) ,

And A (X 2 ) ≠ X A (X) + A (X)X*.

Therefore A is not *- a derivation.
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حول حلول معادلات لیبانوف المؤثرة

عماد عباس كوفي. د.م.أ

المستخلص

الحل لمعادلات شبھ في ھذا البحث ،تم تطویر بعض المبرھنات لأثبات وجود وحدانیة 
.لیبانوف المؤثرة وطبیعة الحل لمعادلات شبھ لیبانوف المؤثرة لأنواع خاصة من المؤثرات

كلیة المنصور الجامعة


