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On The Solutions Of Quasi — Lyapunov
Operator Equations
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Abstract

In this paper, some theorems are modified to ensure the
existence and uniqueness of the solution for the Quasi —
Lyapunov operator equation.

Also, the range of the Quasi — Lyapunov equation is
studied. As well as, the nature of the solution for the Quasi —
Lyapunov operator equation is studied for special types of
operators.
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(1) Introduction

In this introduction, we give some types of linear operator
equations:
(1) The linear operator equation of the form

A'X+XA=W, e, (1)

Where A and W are given operators defined on Hilbert
space H, and X is the unknown operator that must be
determined. This linear operator equation is called the
Lyapunov operator equation, or the continuous — time Lyapunov
equation, [3] and [5].

The author in reference [3] studied the necessary and
sufficient conditions for the solvability of this linear operator
equation.

(2) A special case of the continuous — time Lyapunov operator
equation

AX+XA=W, oo 2)

Where A and W are known operators defined on a
Hilbert space H, and X is the unknown operator that must be
determined, [3] and [4].

(8) The linear operator equation of the form
AX+X' A=W, i, (3)

Where A and W are given operators defined on a Hilbert
space H, and X is the unknown operator that must be
determined, X is the adjoint of X. These linear operator
equations (2) and (3) are called quasi Lyapunov operator
equations or quasi — continuous — time Lyapunov linear
operator equations.
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(2)_The Quasi — Continuous — Time Lyaponov Operator
Equations:

The continuous — time Lyapunov equations, are much
studied because of it's importance in differential equations and
control theory, [6]. Therefore we devote the studying of the
quasi continuous — time Lyapunov operator equations.

Now, does eq. (2) and eq. (3) have a solution?
If yes, is it unique?

To answer this equation, recall the Sylvester -
Rosenblum theorem, [5].

Sylvester — Rosenblum Theorem (2.1):

If A and B are operators in B(H) such that o(A)No(B) =
@, then AX-XB =Y has a unique solution X fore every operator
Y.

According to the Sylvester — Rosenblum theorem, we
have the following corollary:

Corollary (2.1):
If A is an operator such that o(A)No(— A ) = ®, then eq.
(2) has a unique X for every operator W.

Proposition (2.1):
Consider eq. (2), if o(A)No(—A ) = &, then

A
The operator 0

o _a

Proof:

} is defined on H, @ H, is similar to

Since o(A)No(— A ) = ®. Then by Sylvester — Rosenblum
theorem eq. (2) has a unique solution X, also:
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N N

1 X A 0
But is invertible so is similar to
0 1 0 A

A -W
0 —-A |

The converse of the above proposition is not true in
general as we see the following example.

Example:
LetH =1, (C), thatis,

£,(C)= {Xz(xl,xz,...):i‘xi‘2<oo, XieC}
i=1
Define A: H—»H by A (Xl’ xz,...)z(xl,0,0,...).Consider eq. (2),
where W(xlﬂ )(2,...)=(0,>(1 ,O,...).Then X = U is A solution of this
equation since AX+XA:(X15 xz,...):(AU+UA)(xL xz,...)
A0,x,,x,,..)+U(x,,0,0,...)=(0,0,0,..)+(0,x,,0,..)=(0,x,,0,0)=W X

On the other hand, U is solution of eq. (2) and
1 U||A 0 _ A -W||l U
0 11l0 -A| |0 —-Al|]lo 1|
A —-W A 0
Therefore, is similar to .
0 A 0 -A

Moreover 0 is an eigenvalue of A and X= (O, X,, ) is the

associated eigenvector.
Therefore, 0 € o(A)No(— A) and hence o(A)No(- A )# P
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(3) The Nature of the solution of Quasi — Continuous — Time
Lyaponov Operator Equations:

In this paper, we study the nature of the solution of eq.
(2) for special types of operators.

Remark (3.1):

If W is self — adjoint operator, and A is any operator, then
eq. (2) may or may not have solution. Moreover, if it has a
solution then it may be non self — adjoint.

This remark can easily be checked in matrices.

Next if A and W are self — adjoint operators, what
condition can one put on A (or W) to ensure the existence of
self — adjoint solution for eq. (2).

The following theorem gives one such condition.

Theorem (3.1):
Let A and W be positive self — adjoint operators.
If 0 € o(A), then the solution X of eq. (2) is self — adjoint.

Proof:

Since 0 ¢ o(A) then it is easy to see that o(A)No(— A ) =
® and hence eq. (2) has a unique solution X by Sylvester —
Rosenblum theorem.

Moreover,

(AX+XA) =W",
A X +X' A=W,
Since A and W are self — a joint operators, then
AX +X'A=W.
Therefore, X" is also a solution of eq. (2). By the uniqueness of
the solution on gets X=X".

Proposition (3.1):
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If A and W are self — adjoint operators, and the solution
of the eq. (3) exists, then the solution X is a unique.
Proof: Consider

AX+X'A=W,
Since W is self — adjoint operator,
(AX+X"A) =W",
A X +X A=W,
Since A is self — adjoint operator,

AX+X*A=W, Since the solution exists, then X

is a unique.

The following proposition shows that if operators A and
W are skew — adjoint, and the solution of eq. (3) exists then this
solution is unique.

Proposition (3.2):

If A and W are skew — adjoint operators, and solution of
eq. (3) exists, then the solution X is a unique.
Proof:

Consider eq. (3),
AX+X A=W,
Since W is a skew adjoint operator, so

*

—(AX+XA) =— W,
Ay exat-w
(CAX+X'CAT)=—W",

Since A and W are skew — adjoint operators, then
AX+X'A=W .

Since the solution X exists, then the solution X is a unique.

Remark (3.2):
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If A is a self — adjoint operator and W is a skew — adjoint.
Then the solution X of eq. (3) is not necessarily exists.

Remark (3.3):
If W is a self — adjoint operator and A is any operator,

then the solution X of Eq. (3) is not necessarily self — adjoint
operator.

The following example explains this remark.

Example (3.1):
« |1 0
Consider eq. (3), takeW=W = , and

0 0
2 0
A= ,

AX+X A=W,
After simple computations one can gets

a 0

X= £X,
L
2

Where a is any scalar.

Remark (3.4):
If W is a skew - adjoint and A is any operator, then the

solution X of Eq. (3) is not necessarily exists.

The following example explains this remark.

Example (3.2):
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0 2
Consider eq. (3), take W:{ 5 0} and

AX+X A=W.
After simple computations one can gets
x,=1 and x,=0 which has no solution.

Proposition (3.3):
If A is a compact operator then the eq. (3) is compact.

Proof:

Since A is compact then X"A is also compact.
Since A is compact then XA is also compact.

Since AX and X A are compact then AX + XA is compact.
Therefore W is compact.

(4) On the Range of p, :
In this section we study and discuss the range of p, ,

p(X)= p,(X)=AX+X A, XeB(H)
Where A is a fixed operator in B(H).
It is clear that the map p, is a linear map. Also the, map p, is
bounded, since.
loal=AX+X"A X"

XAl <[Allx]+

Al

<|AX]+

since HX*H = |x].
Therefore, HpA H < 2HAH HXH ,
Let M= ZHAH >0 ,so HpAH <M HXH Then p, is bounded.



Al-Mansour Journal Issue(21) 2014 (21) 22l ) seaiall Alaa

The following steps shows that Range ( p, )* # Range (
P )
Range (p,) = {(AX+X°A) , Xe B(H)} ,
A'X+X'A" | XeBH)]
# Range (p, ) -
Also, @ Range (p,) = fa(AX+X'A) , X eB(H)]
= A(@X)+(0X)'A , XeB(H)|

Let aX =X,
a Range (p, )= {A*X1 + XA, X, eB(H)}
= Range (1, ).
The following remark shows the mapping p, is not — a

derivation.
Remark (4.1):

Since p, (XY) = A (XY) + (XY) A
= AXXY)+Y XA
Forall X,Y €B(H),
And X p, (Y) =AY + Y A],
= XAY + XY A
Also,  p, (X)Y = (AX + X A)Y |

= AXY + X AY.
Then one can deduce that:
PAXY)EX p, (Y)+ pu (X)Y .
Now the following remark shows the mapping p, is also

* . .
not - a derivation.

Remark (4.2):
Since p, (X +Y)=AX+Y)+(X+Y) A,

-9.



Asst. Prof. Dr.Emad A. Kuff i S e dae 3]

= AX+AY + X A+ Y A,
=AX+X A+AY +Y A,

= paX)+ pu (Y).
Now,

Xp,(X)+ py (X)X = X[AX + X Al + [AX + X A X",
= XAX + XX A+ AXX" + X AX ",
2 2 % \2
s0 p (x2)=(ax? + (x° VA,
and Pa (Xz) FXPA(X)+ py X)X .

then p, is not " a derivation.

(5) On the Range of 1, (X):

In this section, we study and discuss the range of x, ,
where
Uy=ts (X)=AX+ XA , XeB(H)
Where A is a fix operator in B(H)).
It is clear that the map 4, is a linear map. Also, the map x, is

bounded, since |, |=[AX +XA|<M|X] ,
Where M = 2HAH >0.Then u, is bounded.

The following steps shows that  Range (¢, )*75 Range

(Ly)-
Range (12,)" = {(AX + XA)" , XeB(H)] ,

= A'X"+X"A" ., XeBH)]

# Range (1, ).
Also, oo Range (u, ) = {a(AX+XA) , XeB(H)},

= {A(0X)+(0X)A , XeB(H)}

Let aX = X,
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= {AX, +X,A , X, eBH)}
= Range (4, ) .
The following remark shows that the mapping £, is not
a derivation.

Remark (5.1):

Since 1, (XY) = A(XY) + (XY)A,
Forall X,Y eB(H),
And X 1, (Y) = X(AY) + X(YA) ,

= XAY + XYA.

Also, 1, (X)Y = AXY + XAY ,

Then one can deduce that:

Ha XY)#E Xy (Y) + g1 (X)Y
Now, the following remark shows that the mapping 1, is

also not v a derivation.
Remark (5.2):
Since p, (X+Y) = A(X+Y) + (X+Y)A,
= AX +AY + XA + YA,
= (AX + XA) + (AY + YA),
= Uy (X) + Ha (Y).

Now,
X, (X)+ 1, (X)X = X[AX +XA] + [AX + XA]X .
= XAX + XZA + AXX " + XAX".
So, Ly (XP)= (AX?+ XPA),
And fa ) EX 1, (X) + 1y (X

Therefore 1, is not " a derivation.
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