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Abstract

The Randomness is one of the basic criterions to measure stream cipher
Efficiency. The stream cipher generator depends basically on Linear
FeedBack Shift Register which is considered as one of the basic units of
Stream Cipher Systems. In this paper, the frequency postulate of
Randomness criteria is calculated theoretically for non-linear stream cipher
systems before it be implemented or constructed (software or hardware),
this procedure save time and costs. Two non-linear stream cipher
generators are chosen to apply the theoretical studies; these key generators
are the Complement Product and Shrinking Generators. The theoretical
proofs of frequency estimation for the two key generators are introduced.

|11 Scientific Conference 19-20 Nov.2011 m



Zainab Sadiq 2012 cira gaba by e

1. Introduction

Shift register sequences are used in both cryptography and coding
theory. There is a wealth of theory about them; stream ciphers based on
shift registers have been the workhorse of military cryptography since the
beginnings of electronics. A feedback shift register is made up of two parts:
a shift register and a feedback function. The shift register is a sequence of
bits. (The length of a shift register is figured in bits). Each time a bit is
needed, all of the bits in the shift register are shifted 1 bit to the right [1].

In 1967 [2] Golomb deduced three theorems about the maximal sequence
generated from LFSR. One of the three Golomb’s theorems deduced from
the frequency postulate.

In 2009 [3] Al-Shammari, A. G., through his Ph. D. thesis, introduces four
basic criterions which are: Periodicity, Linear Complexity, Randomness and
Correlation Immunity used as basic criterions to measure Key Generator
Efficiency. He can calculated these basic criterions theoretically for any key
generator before it be implemented or constructed (software or hardware).
This work introduces the mathematical proof of the good efficiency of the
linear keygenerator deterministically.

In this paper, some studies are applied on the SCG sequences to
determine the sequence frequency. The Basic efficiency for SCG can be
defined as the ability of SCG and its sequence to withstand the mathematical
analytic which the cryptanalyst applied on them, this ability measured by
some basic criterions, the most important of is the randomness; one of the
randomness postulates is the frequency postulate.

In the next part of this paper, the frequency postulate of randomness
criterion will be discussed and introduce the basic conditions to obtain
efficient SCG especially those related to frequency. It's important to
mention that the zero input sequences must be avoided, this done when the
non-all zeros initial values for LFSR’s are chosen.

Let SCG consist of n-LFSR’s have lengths r4,r,..,r, respectively with
CF=Fn(x1,X2,...,Xn), s.t. x;€{0,1} 1<i<n, represents the output of LFSR;, let
S={s¢,s1,...} be the sequence product from SCG and s;, j=0,1,... represents
elements of S. let S; be the sequence i product from LFSR; with a;; elements
1<i<n, j=0,1,...,.
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2. Conditions of the Theoretical Estimation
There are some conditions must be hold to guarantee that the SCG has
good statistical properties. The combined LFSR’s must have maximum
periods and the periods of LFSR’s must be relatively prime with each others.

1
Definition (1) [3]: Let GCDy=gcd(][m,,m2.GCD1)=gcd(ms,my), for
i=l
convenient let GCD.=1 and so on the general form of the recursion
equation will be:

n-1
GCDy=gcd(] | m;,mn.GCDy.1) ..(1)
i=1
where n>2 s.t mi are positive integers, V1<i<n.
Theorem (1) [3]:

Let mijeZ+, V1<i<n then:

n

Hmi
lcem(my,my,....my)=—=—— ..(2
( 1 2 n) GCDn(mi) ( )
where GCD,(m;) defined in (1).

Let the sequence S has period P(S), the period of LFSR; denotes by
P(Si), P(S) and P(S;) are least possible positive integers, so

P(S)=lcm(P(S1),P(S2),...,P(Sn)) ...(3)

1176
P(S)=—-!

= . (4)
GCD, (P(S,)

s.t. GCD,(P(S))= gcd{ﬁ P(S,),P(S,)-GCD, , (P(S, ))} [3]

i=1

If P(S;) are relatively prime with each other this mean GCD,(P(S;))=1 this
implies:
P(S)=]]PeS) ...(5)

i=1
It’'s known earlier that P(S;) <2" -1, and if the LFSR; has maximum period
then P(Si)= 2" -1 [4].
Theorem (2) [3]
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P(S)=1_[(2ri —1) if and only if the following conditions are holds:
i=1

1. GCDn(P(Si))=1,.
2. the period of each LFSR has maximum period (P(S;)=2" —1).

3. Randomness
The sequence that is satisfied the three randomness properties called
Pseudo Random Sequence (PRS) [2]. The randomness criterion depends on
LFSR’s and CF units, therefore from the important conditions to get PRS is,
the sequence must be maximal and CF must be balance [4].

To guarantee the SCG to produces PRS, the sequence must pass
randomness tests with complete period, these tests applied into two ways, on:

[1]

1. Global sequence for complete period and that is the right way (but it’s hard to
applied for high periods).

2. Local sequence for many times for various lengths less than the origin
length.

In this part, the 15! way will be applied theoretically for any period.
If GCD,(P(Si))=1 then,

)Y,
P(S)=27 +(=D)- (27 - 425 e (D)2 4 2) (D" ...(6)

Let R, denotes the combination to sum m of numbers r; from n of the
numbers r;, Ry, denotes the set of all possibilities of R s.t.

1,

R! = i 0<m<n, 1<i<n, te{1,2,...,C,"}
5

=l

r T

2oeeendy

define R;={R,"}, Ro'=0.

For instance let m=1then R, ={R|,R?,..,R"} Rl =r,..,RI =t

If m=n then R={Rx'}, R\'=> 1,

i=1

So equation (6) can be written in compact formula:
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PS)=Y (-1 .Zk:zR‘H ()

4. Frequency Postulate

Golomb mentioned that in general , if the sequences S is periodic sequence
of period n then in the cycle S" of S, the number of 1's differs from the number
of 0’s by at most 1. This is which be called frequency postulate.

1st Golomb’s theorem says that if LFSR with length r has maximal sequence
then N(0)=2""-1 and N,(1)=2"", where N,(a) denotes the number of bit “a” in the
maximal sequence [2] s.t.:

P(r)=2"-1=(2""1-1 )+2"1=Zl:Nr(a)

Let Ns(a) be the frequency of bit “a” in S which generates from SCG then:
P(S)=2 N@=N, ©0)-- N, (O+N, (0 N, ()+--+N, (D-- N, (1) .+(8)

From this equation the act of CF will starts to distribute the ratio of “0” and
“1” in S. If the terms of equation (8) rearranged s.t. 0=F(ais,ai2,..,ain), 1<i<mq for
the 1% mo terms, and 1=F(ai1,ai2,..,ain), 1<i<m4 for 2" m, terms 2"=m¢+m;, then,

Ns(a)=>' TN, (a;) (9)
i=1 j=l
subject to a=F(aj,aiz,..,ain) s.t. 1<i<m, , a=0,1.

Where m, denotes the number of states which are subject to the above
condition [3].

In the next sections we will introduce new theorems, as Golomb do on LFSR,
to show the frequency distribution for two famous SCG, these SCG are:
complement Product and Shrinking SCG's.

5. Complement Product Generator (n-CPSCG)

The Product generator is defined by n-maximum-length LFSRs whose
lengths rq, ra,..., rh, Where neZ' are pair wise relatively prime, with AND
combining function [5]:

Fr(X1,X2,..,Xn) = X10X20...8Xp, =1_[xi ... (10)
i=1
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In this paper the complement product generator will be discussed. The
generator takes the complement of the output of every LFSR. So, equation
(10) can be written as follows:

Fn(x1;x2;--;xn) =ﬁ(Xi ®1) - (11)

This generator considered weak, despite of his good linear complexity,
because of his weak randomness (see Figure 1).

| LFSR1

Outpu

L]

| LFSR2

LFSRn

Figure 1 Complement Product CSG.
For n=3 the truth table of this generator will be shown in table (1).
table (1)The truth table of Complement Product CSG.

x
ke
9
X
&
-
s

0
0
0
0
1
1
1
1

= = O O = = o ©o
= O = O = O = O
O O O O O O © =

The linear complexity (LC) of this generator is LC(Sp) = [ [ (1; +1)

i=1
Where Sp is the sequence generate from n-CPSCG.

Assuming the degrees of the all combined primitive feedback
polynomials are relatively primes.
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The correlation probability CP(S;) of the sequences S; generated from of
output of LFSR; which is combined in the n-CPSCG. It can be calculated by
the following Lemma (1).

Lemma (1): for all inputs of the product function consists of n-LFSR’s, the
CP=0.5+1/2".

Proof:

Since the complement of the product function gives output zero’s every
where accept for the state when all inputs are zeros’s the corresponding
output is one, then for all zero’s and all one’s inputs are identical to the
corresponding output of the product function, then the CP is:

CP4(S) = 2/2" ...(a)
Where n is the number of combined LFSR’s.

Half of the rest inputs is 2"-2 are zero’s, so they are identical to the
corresponding output of the product function, then the CP; is:

2" -2
2" 1

2
CP; = = ...(b
2 2" 2" (b)

The final CP is the sum of the CP’s in equations (a) and (b), then

n-1 n-1
cp=2,2 1.2+l 45,1
2]’1 2]"1 21"1 2!"1
Table (2) shows some values of correlation probability for n=2...8
depending on equation (11).

..(12)

Table (2) some values of CP for n=2...8 using on equation (12).

8

0.507421
875

In the next theorem the frequency of “1” (Ns(1)) in the generated
sequence from n-CPSCG can be calculated.

Theorem (3): Let Ns(a) be the number of a-bit in the sequence S generated from
n-CPSCG, a<{0,1}, then:

S

Ns(1)=27 (@ D ooy L () (0 4 425+ (=D (13)
Proof:

Recall equations (8) and (9).
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P(S)=N, (0).N, (0)--N, (0)+...+ N, (D.N_ (1)---N, (1)

Ns(1 )=1£[Nri (0)=N, (O.N_(0)-N, (0)=(2"" =1)- (2" =1)---(2"" ~1)

i=1

Has i}

Ns(1)=27 (@t w4 et g 0 ) (]!

From the result of the above theorem:
E - Hy+ - () -+ -, (1) n— —1 —1 n
Ns(0)=P(S)-2~ (@™ ™" 4 227N ()T (2 4 - 27D .. (14)

Ns(0)=(2" —1)-2F  —2"' —D)- @@= o@D o g 0Dy (2 e 207

Lemma (2): In the n-CPSCG, T iy (N ()/P(S)) = 2in,1si3n.

00

Proof:

N e

i=1

PO 110 -1

As ri>x, then 2" —1>2%and 2" -1—52%" (ignore 1), then:

iri—n
Ny@®» 27 1
P(S) S, 2"
2.:1
Example (1):

Table (3) shows the proportion of Ng(1) to P(S) for various n-cPSCG.
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Table (3) the proportion of Ns(1) to P(S) for various n-cPSCG.

Proportion
Expected | Observed

3 21
15 93
945 3937
64449 | 259969
45 651
315 3255
6615 | 59055
107415 | 951855
2835 82766
19845 | 413385

6. Shrinking CSG (2-SHCSG)

The shrinking generator [6] uses a different form of clock control than
the previous generators. It’'s a relatively new keystream generator, having
been proposed in 1993. Nevertheless, due to its simplicity and provable
properties, it is a promising candidate for high-speed encryption
applications. In the shrinking generator, a control LFSR1 is used to select a
portion of the output sequence of a second LFSR2. The keystream produced
is, therefore, a shrunken version (also known as an irregularly decimated
subsequence) of the output sequence of LFSR2 depicted in Figure (2).

Clock

output
discard b;

Figure (2) Shrinking CSG [6].

Shrinking Generator Algorithm is as follows:

A control LFSR1 is used to control the output of a second LFSR2.

The following steps are repeated until a keystream of desired length is
produced.
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1. Registers LFSR1 and LFSR2 are clocked.
2. If the output of LFSR1 is 1, the output bit of LFSR2 forms part of the
keystream.
3. If the output of LFSR1 is 0, the output bit of LFSR2 is discarded.
More formally, let the output sequences of LFSR1 and LFSR2 be ag,as,ay,... and
bo,b1,b2,..., respectively. Then the keystream produced by the shrinkin%
generator is Xo,X1,X2,... , Where x;=bij, and, for each j20, i; is the position of the jt
1 in the sequence ag,aq,as,....

This idea is simple, reasonably efficient, and looks secure. If the
feedback polynomials are sparse, the generator is vulnerable, but no other
problems have been found. Even so, it’s new. One implementation problem
is that the output rate is not regular; if LFSR1 has a long string of zeros then
the generator outputs nothing. The authors suggest buffering to solve this
problem [6].Practical implementation of the shrinking generator is
discussed in [7].

Example (2): (shrinking generator with artificially small parameters) Consider a
shrinking generator with component LFSR1=<3,1+D+D®>> and LFSR2
=<51+D*+D>>.

Suppose that the initial states of LFSR1 and LFSR2 are [1,0,0] and
[0,0,1,0,1], respectively. The output sequence of LFSR1 is the 7-periodic
sequence with cycle

a’=0,0,1,1,1,0,1,
While the output sequence of LFSR2 is the 31-periodic sequence with
cycle
b*=1,0,1,0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,1,1,1,0,0,0,1,1,0,1, 1,1, 0.

The keystream generated is
Ssu=1,0,0,0,0,1,0,1,1,1,1,1,0,1, 1,1, 0,....

Fact (1): (properties of the shrinking generator) Let LFSR1 and LFSR2 be
maximum-length LFSRs of lengths ri and ry, respectively, and let Ssy be an
output sequence of the shrinking generator formed by LFSR1 and LFSR2, If
gcd(ry,r2)=1, then the period P(Ssh):

P(Ssu)=N, ().N, (0)+ N ().N_(1)=2""- %" —1+2"".2%" =277 277 (15)

Establishes that the output sequence of a shrinking generator satisfies the
basic requirements of high period, high linear complexity, and good statistical
properties.

In the next theorem the frequency of “1” (Ns(1)) in the generated
sequence from 2-SHSCG can be calculated.
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Theorem (4): Let Ns(a), a=0,1 be the number of bit (a) in the sequence Ssy
generated from 2-SHCSG, then:

Ns(0)= 2" —-2"" and,
Ns(1)=21""
Proof:

Recall equations (8) and (9), and when n=2 for 2-SHSCG, only N, (1)is active,
then:

Ns(0)=N, ()N, (0)=2""-(2%" —1)=2"""2 -2 ...(16)
and,
Ns(1)=N, (DN, ()=2"".2" =217 ...(17)

Example (3):
Table (4) shows the values of Ns(0) and Ng(1) for different r; of 2-SHSCG.
Table (4) the values of Ns(0) and Ng(1) for different r; of 2-SHSCG.

ri P(S.) Ns(a)

e — P(SSH)

P(S1) | P(S2)

3 7
7 15

Ns(0)

2*3=6
4*7=28

Ns(1)

2*4=8 14

7

31

4*15=60

4*8=32 60 I

4*16=64

15

31

8*15=120

8*16=128

7

4*63=252

4*64=256

31

16*63=1008

16*64=1024

Lemma (3): In the 2-SHSCG, Ns(a)/P(S)=0.5, a=0,1, when r; be as large as
possible,1<i<2.

Proof:

NS(O) i 21”1+r2—2 _2r1—1 _ 2r]—1 (zrz—l _1) _ 2r2—1 _1
) 2o 2R on) 2ol

As r; be as large as possible, then 2% —1—2"(ignore 1), then:
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-1
N0 2 1
PS)  2° 2
Ns(l)_ 2r|+r2—2 B 21‘171(2571) B 21‘271
P(S) 272t 2R _1) 2% -]

As r; be as large as possible, then 2% —1—2"(ignore 1), then:

. Ns(l):£=l=05 (18)
s 2 2

Example (4):
Table (5) shows the proportion of Ns(0) and Ng(1) to P(S) for various 2-SHSCG.
Table (5) the proportion of Ns(0) and Ns(1) to P(S) for various 2-SHCSG.

Proportion of Ng(a)
Observed

Expected

7. Applying of Chi-Square Tests on Study Cases

In this part we will apply chi-square test on the results gotten from
calculations of frequency postulate on two study cases.

Let K be the number of categories in the sequence S, c; be the category i,
N(ci) be the observed frequency of the category c;, p; the probability of
occurs of the category c;, then the expected frequency E; of the category c; is
Ei=P(S)-pi, the T (chi-square value) can be calculated as follows [8]:

T=2(N(C])E—_E)2 ...(19)

Assuming that T distributed according to chi-square distribution by v=K-1
freedom degree by a as significance level (as usual a=0.05%), which it has T,
as a pass mark. If T<T, then the hypothesis accepted and the sequence pass
the test, else we reject the hypothesis and the sequence fails to pass the test,
this mean that T not distributed according to chi-square distribution.
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Let N(c.)=Ns(a), for a=0,1.
To apply Hypothesis test:
Ho: Ns(0) ~ Ns(1), while,
H: there are a big difference between Ns(0) and Ns(1).

Then we apply the hypothesis test for the difference between two
frequencies using chi-square distribution:

_(NS()-Ng())* _
T S 22(1), s.t. v=1.

Example (5):

In order to test our results we have to suggest an example suitable to our
two studied cases. Let ri=9 and r,=11. In Frequency test v= 1, with a=0.05%,
then T¢=3.84 (see chi-square table).

1. 2-CPSCG: P(Sp)= 1046017. From equation (13) we get Ng(1)= 260865, and
Ns(0)=P(S)-Ns(1)=785152,
T= (785152 —260865)
1046017
CPCSG fail to pass the test and we refuse the hypothesis Hy and accept Hy,
this means there is a big difference between Ng(0) and Ng(1).

2. 2-SHSCG: P(SsnH)=524032 from equation (17), we get Ns(1)=262144, and
Ns(0)=P(S)-Ns(1)=261888,
B 2
T= (261885824 023622144) = 0.1251 < T,=3.84, then S generated from 2-SHCSG

passes the test and we accept the hypothesis Hy, and refuse H4, this means
there is no big difference between Ng(0) and Ng(1).

= 262784.313 >> T(,=3.84, then S generated from 2-
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7. Conclusions

1.

In this work we prove deterministically that the complement Product
generator fail in frequency randomness test, while we prove
deterministically that the Shrinking generator passes the frequency
randomness test, in another word, it's have good statistical frequency
properties.

. These theoretical studies can be applied on other kind of SCG,s to calculate

the frequency of these SCG,s which are use combining functions with some
combinations of variables.

. As future work we may apply other properties of randomness criterion like,

serial run, poker and autocorrelation on non-linear SCG.

. The frequency test is not enough to judge on the sequence that has good

randomness tests we still have the run and autocorrelation test.

. We recommend that not to use the complement Product generator in

cryptography since its fail to pass the frequency test then it may fail to
passes the other randomness tests and not to use shrinking generator in
cryptography since it’s still weak even it passes the randomness tests.
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