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ABSTRACT
Based on the principle of RSA, RSA cryptosystem using Chinese

Remainder Theorem (CRT) and square-multiply method is designed and
implemented, including large integer, generation of big primes and computing
extended greatest common divisor (EGCD) of big Integer.

The system designed as threads to include the necessary operation to
realize operation of computing decryption exponent of RSA algorithm which
specifies the number of modular multiplications needed to perform the
exponential process and the modulus to determine the size of the intermediate
results, hence; make use of the properties stated by the CRT and Fermat's
theorem. This paper focus on increasing RSA speed in the decryption part
based on CRT. The design of a class for generating special prime big Integer to
construct a special decryption keys and a class built as a thread to generate
special CRT modular exponentiations to construct the decryption keys. A
sequence of squaring and multiplications are used to decrease the time to
perform modular exponentiation on each generated prime Big Integer instead
of using exponentiation.

A Miller-Rabin probabilistic test is used to run on the Big Integers. It is
used to test an algorithm which generates a random integer with a primly
probability at a specific bit-length. Large random numbers were generated and
then a test for primarily using Miller-Rabin was tested.
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1. Introduction
Public key cryptosystem was introduced in 1976 by Whitfield Diffe and

Martin Hellman of Stanford University. It uses a pair of related keys one for
encryption and other for decryption. One key, which is called the private key, is
kept secret and other one known as public key is disclosed [1]. The massage is
encrypted with public key and can only be decrypted by using the private key.
So, the encrypted message cannot be decrypted by anyone who knows the
public key and thus secure communication is possible. RSA [2] (named after
its authors Rivest, Shamir and Adleman) is the most popular public key
algorithm. In relies on factorization the problem of mathematics that states,
given a very large number it is quite impossible in today's aspect to find two
prime numbers whose product is the given number. As the number become
larger, the possibility for factorizing it decreases.

So, very large numbers were needed for a good public key cryptosystem.
Java has an excellent library called BigInteger Package that can handle
numbers of arbitrary precision [3]. This library is used to implement RSA
algorithm. BigInteger instead of the standard integer must be used because an
integer variable cannot exceed 1231  while a BigInteger can simulate arbitrary-
precision integers [3].

2. System Design and Analysis
In RSA [2], the most extensive work being done is power and module

operations. Power module operation cannot be computed directly therefore
this reduces the speed of RSA and hence it is time-consuming. The
multiplications modulo is being done on a large number which is the core of
this algorithm. These operations are time consuming, making even a Pentium
IV unable to perform more than few thousands cryptographic operations per
second [4]. Either division or series of subtractions must be used, but most
algorithms for division can only calculate one (or two) bit(s) per cycle, hence a
complete multiplication of a*b mod n, with n is 2048 bit modulo for examples,
might at least take 32+2048 cycle, where the 32 cycles are used to calculate the
product and the 2048 cycles are for the trail division [4].

Square and multiply algorithm [5] was further modified to reduce the
number of iterations, doubling the speed of modular multiplication, and then
using CRT technique to reduce the RSA computation by a divide-and-conquer
method.

By taking the advantage of the CRT [6],hence, designing the system that
the computational effort of decryption can be reduced significantly if the two
prime numbers P and Q of the modulus N are known, then it is possible to
calculate the modular exponentiation M = NC D mod separately with mod P and
mod Q being the shorter exponents, decomposition exponentiation. Since the
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length of the exponent is n/2, approximately, 3n/4 modular multiplications
are needed for a single modular exponentiation [7].

The scenario of the proposed design is based to accelerate decryption part
of the RSA algorithm using CRT. The modulus used in the RSA encryption
schema is the product of two prime numbers. This allows utilizing CRT in order
to speed up the private key operations. From a mathematical point of view, the
usage of CRT for RSA decryption is well known. But for software
implementations, a special algorithm is necessary to meet the requirements for
efficient CRT-based decryption.

2.1. Modular Exponention Algorithm
To encrypt a message using the encryption key (E, N), the message is first

partitioned into a sequence of blocks and each block M is considered as an
integer between 0 and N-1. Then, the message is encrypted by raising M to Eth
power modulo N, i.e. NMC E mod . Similarly, to decrypt the ciphertext C using
the decryption key (D, N), C is raised to the power of D modulo N, i.e.,

.modNCM D

Clearly, modular exponention is the main operation of the RSA algorithm.
For modular exponention, a sequence of modular multiplication can be
performed instead [8].

2.2. Exponentiation by Squaring and Multiplication
Both encryption and decryption involve raising a numerical representation

of the message (original or encoded) to a power (e or d) and then finding the
remainder when the result is divided by n. The usage of RSA algorithm, namely
exponentiation, which involves squaring and multiplication engaging
repeatedly squaring and multiplying a temporary variable by M (or C) and mod
n at each step thus allowing the use of much larger values for n, e and d [5].

2.3. Square and Multiply Algorithm
This algorithm starts at the least significant bit and works upward [8]. This

algorithm requires a temporary variable to store the middle variable.

Algorithm (Square and multiply Method)

Input: M, E;

Output: EM contained in C;

S=M;

C=1;

For i=1 to K
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{

If (i-th bit of E is 1) then

C=C*S;     //Multiply

S=S*S;     //Square

}

The multiplication and squaring of this algorithm are independent of one
another and thus two operations at each loop can be parallelized using thread
technique in java which is built by two threads, one for each.

3. BigInteger Implementation:
The BigInteger class used is intended to store large integers and execute

any ordinary mathematical operation. The BigInteger class will represent
numbers digitally, in a numeration basis of choice 1622  base . The traditional
integer operators (+, –, *, /, %, <, >, =<, >=, = =, !=, =) have been overloaded, so
that any subsystem that uses the BigInteger class is offered the typical and
natural way of manipulating the arithmetical operations on a specific
BigInteger. The following specific arithmetic, abstract algebra and
computational operations have also been loaded into the BigInteger class, in
order to enhance its usefulness [3]:

 The power operation (through fast binary exponentiation)
 The greatest common divisor (GCD), using the standard Euclidean

algorithm and the extended Euclidean algorithm.
 The modular multiplicative inverse algorithm.
 The modular exponentiation method, using the repeated squaring

algorithm.
 The serializing and desterilizing of a BigInteger.
 Adding and removing the salt digits of a BigInteger.
 Adding, checking and removing of the replication digits of a BigInteger.

4. RSA Decryption Complexity

The complexity of the RSA decryption NCM D mod depends on the size of
D and N. The decryption exponent D specifies the numbers of modular
multiplications necessary to perform the exponentiation and the modulus N
determines the size of the intermediate results. A way of reducing the size of
both D and N is to take advantage of properties stated by the CRT and Fermat's
little theorem.
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Fermat's little theorem [8] is very useful for calculating the multiplicative
inverse of an integer (a) because paa p mod11   .

4.1. Decryption Part
Let m be the plaintext and C the ciphertext. If C is not divisible by p
and 1mod  pdd p , then )(mod pcC dd

p
p  for decryption.

4.1.1. RSA Decryption Part Method

RSADP(K,C)
Input: K: - where K has the following forms:

1- a pair (N, d)
2- quintuple ( qInvddqp qp ,,, )

C: - ciphertext representative, an integer between 0 and N-1.

Output: M: message representative, an integer between 0 and N-1.

Errors: "ciphertext representation, an integer between 0 and N-1 (out of
range)".

Steps:-

1- If the ciphertext representing C is not between 0 and N-1, output
"ciphertext representing out of range" and stop.

2- If the first form (n,d) of K is used:
2.1- let .modNCM d

Else, the second form ),,,( qInvdqp p of K is used:

2.2- let .mod1 pCM pd
p

2.3- let .mod2 qCM qd
q

2.4- let .mod).21( pqInvMMh 

2.5- let ..2 hqMM 

3- Output m.

5. System Algorithms
In this system a description of three constituent algorithms: key

generation, encryption and decryption are given.



2012Ammar H. Jasimعمار حسین جاس. م. م

156 |11th Scientific Conference 19-20 Nov.2011|

5.1. Key generation:
Input:

1. 1- N=4096;   // standard security parameter.
2. Generate two (N/2)-bit primes p,q. differing in length by 10-20 bits. (If

the primes are too close to sqrt(n), then factorizing is the solution).
The primes are also chosen so that p-1 and q-1 do not have 3 as a
factor, because this implementation uses 3 as the encryption
exponent. A special generator is used to create a long bit seed.

3. Sets N=p.q.
4. Pick a small value of e which is relatively prime to ).1)(1()(  qpn

Where encryption exponent usually chosen e=3.
Output:

1. RSA public key (N,e)
2. RSA private key (d)
3. ).(mod1. Nde 

5.2. Encryption

First format the bit-string M to obtain an integer M in }.1,....,0{  NZ n

1. Use an exponent e of 3.
2. Use RSA public key (N,e)
3. Compute NMC e mod

5.3. Decryption
The RSA decryption operation can be speeded up by using the CRT [7], where
the factors of the modulus N (i.e., P * Q) are assumed to be known. If c is
ciphertext, then RSA decryption calculates:-

NCM D mod ……………………….1

By CRT, the computation of equation (1) can be partitioned into two parts:

3.).........1mod(,mod

2.),........1mod(,mod

modmod 21







QDDQCC
PDDPCC

where
qCvandPCv

qq

pp

D
q

D
p

qp
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Instead the CRT allows one to deduce C mod N from the knowledge of C mod P
and C mod Q. In fact, their size is about half the original size. In the ideal case,
a speedup of about 4 times may be achieved. Finally, compute M by CRT as
follows:

Arithmetic mod P should be converted to mod (P-1) in an exponent because

)'(1mod1 theoremsfermatPa P 

Thus a simpler calculation may be used which is:-

qcv
andpcv

qd

pd

mod

mod
)1mod(

2

)1mod(
1









Finally, calculate:

qCvvu
andqpC

mod)(
mod

212

1
2


 

Giving:

.mod 1 upvnCM d 

Or

.mod))mod()mod(( 11 NPQPMQPQMM Qp
 

When using CRT technique [7], a partitioning process of the modular
multiplier is done which will give two smaller ones according to their lengths P
and Q. Then, computation of QCMandPCM qp D

qq
D
pp modmod  using

square and multiply method, which is then, put into processes as independent
threads for modular multipliers, in turn reducing the computation time. Note
that the partition is done according to the lengths of P and Q, so each thread
must be able to read the data from the primary input directly, and be able to
return the output data to the primary output variable to finish the final step of
the modular multiplication. P and Q are fixed after key generation, therefore,
the partition of N into P and Q needs to be done only once, before the RSA
computation starts.

5.4. Pseudo Code of RSA Encryption
1. Read E, N, message.
2. Convert message to BigInteger representation (m).
3. BigInteger NMC E )%( .
4. Printout C.
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5.5. Pseudo Code for RSA Key Generation
1. Read two prime BigInteger p, q.
2. Compute BigInteger N, v where N=p*q, v= (p-1)*(q-1).
3. Read small odd integer E=3 such that gcd (E, v) =1.
4. Compute integer d such that (d*E) %v=1.
5. Write (N, E, d).

5.6. Pseudo Code for RSA Decryption
1. Read d, N ,C.  (C is integer representation of ciphertext message)
2. Compute QCPCNCD d

q
d
p

d %,%)%(  . (D integer representation of
decrypted ciphertext)

3. Write D.

5.7. Pseudo Code for Probable Prime
Using Rabin-Miller test for determine if a given number is prime. (Create a
random number generator)

Random rng=new Random ();. (Declare p and q as type BigInteger)

BigInteger p, q; (Assign values to p and q as required)

P=BigInteger.ProbablePrime (2048, rng);

Q=BigInteger.ProbablePrime(2048, rng);

5.8. Pseudo Code for Power Module
Compute M mod N using BigInteger.

BigInteger PowMod(BigInteger M, int[] b, BigInteger N, int K)

{

BigInteger Result=1;

For (int i=k; i>=0; i--)

{

Result=Sqr(Result,Result); //Run Thread to compute Result=Result*Result;
(squaring)



No.17/ Special IssueMansour Journal-AL /2012خاص/ 17/عدد/مجلة المنصور 

|11th Scientific Conference 19-20 Nov.2011 159

If(b[i]==1)

{

Result=Mul(Result,M); // Run Thread to compute Result=Result*M;
(Multiplication)

}

If(Result>=N)

{

Result=Result%N;

}

}

Return Result;

}

6. System Development and Implementation
This work focuses primarily on the implementation of Fast RSA. For

efficient design and implementation, MATH and BigInteger library in JAVA have
been used. Exploration of the behavior and feasibility of the algorithm when
changing various input parameters, have been discussed.

Because any practical implementation of RSA cryptosystem should
involve working with large integers (in this case, of 2048 bits). One way of
dealing with this requirement would be to write a library that handles all the
required functions. While this would indeed make such application
independent of any other third-party library, however, this was not done due to
mainly two considerations. First, the speed of this implementation would not
match the speed of the libraries available for such purposes. Second, it would
probably be not as secure as some available open-source libraries. A choice of
two libraries the BigInteger library and MATH library [3]. The BigInteger
seemed to suit such needs. The BigInteger library aims to provide the fastest
possible arithmetic and arbitrary precision integer for applications that need a
higher precision than the ones that directly supported under JAVA by using
highly optimized method.

The BigInteger data types which provide immutable arbitrary-precision
integers have been used to ensure accuracy in calculations involving large
values. The message, key generation, encryption and decryption routines all
use the integer handling functions offered by this library. All the usual
mathematical operations to BigInteger as well as others like modular
arithmetic, gcd, primality testing etc. may be applied.
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In this design software was developed to encrypt and decrypt
alphanumeric information using Fast RSA algorithm. This software allows
generating different public keys from two prime numbers provided by the user,
the user must select a public key to generate the corresponding private key. To
encrypt the information, the user must provide the public key of the recipient
as well as the message to be encrypted. The generated ciphertext can then be
sent through an insecure channel, at the end of the transmission, the recipient
can decrypt the original message if the public key and the corresponding
private key, were provided.

6.1. Establishing the parameters and operations for Fast RSA
scheme

1. System parameters
1- p and q are two big primes whose bit sizes 2048, and they are kept

secret. For the safety case, the difference of two sizes must be big
enough.

2- )1)(1(,*  QPQPN  , and  is kept secret. Our software uses a 4096
bit modulus Fast RSA implementation.

3- E can only plus integer but the great common division of e and  must
be 1. D is an integer and mod1* ed .

4- ),( NEK p  Is the public key and ),( NDK s is the private key.
5- Let M is a plaintext , .mod,modmod)( QMPMNMM DE 

2. The procedures

1- Encryption: NMMEEncC E mod),(  .
2- Decryption: .mod,modmod),( QCPCNCCDDecM ddD  .

3. The operations
1- Select two big primes, and compute N and .
2- To speedup encryption select E=3. Based on E and N, D can be

computed.
3- Compute QMPM keykey mod,mod , where key can be E as well as D.
E can be tried from 3 for )1)(1(  QP is even, therefore E can be

increased with 2 once. The algorithm of computing E can be:

BigInteger ComputeE(BigInteger  )

{

BigInteger e=3;
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BigInteger division=0;
While (GCD( ,e)!=1) // Here GCD is the function to compute the greatest

common division of  two integers, and it can be implemented with Euclid
Algorithm.
{

E=e+2;
}

Return e;
}
Figure (1) illustrates all steps of proposed system. While figure (2) show the
specific operation of Fast RSA schema.

Figure 1: The Flowchart of Proposed System



2012Ammar H. Jasimعمار حسین جاس. م. م

162 |11th Scientific Conference 19-20 Nov.2011|

Figure 2: Fast RSA System Operation Diagram

6.2. System Model
Figure (3) depicts the suggested layer for the implementation of the FastRSA
system.

Figure 3: System Layers
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Graphical User Interface (GUI) was developed using JAVA Builder 7.0 to
generate the keys according to the methodology described in the previous
section. The user will provide the numbers p and q, then the program check
that p and q are prime numbers. If p and/or q are not prime numbers, the
program displays a warning message, and then the program
calculates )(, nandn  .After, user B has to choose randomly a public key (e).
Finally user B generates the corresponding private key, by run the
RSAPrivateKeyFast class. The suggested method was implemented as a
thread. The input values of the public key e and the RSA modulus N will be
used by this thread to calculate the value of the secret key d and the prime
factors of N for each user.

Based on these calculations, three classes are built. The first one is
FastRSA class which provides the implementation of core algorithms; the
second class is RSAPublicKeyFast which is the subclass of FastRSA, and it
has three methods of encryption, get (N), set modulus (N), and
RSAPrivateKeyFast which is the subclass of RSAPublicKeyFast. It also has
two methods of decryption and key pair generation.

7. Performance Analysis of the Proposed Design
The Experimental results are listed in table (1). Note, each time

measurement correspond to the average of 5 executions. The outputs are
calculated using e equals to 3 as encryption exponent with the variation of the
constant which representing the key size. The following execution times were
recorded using the message ("Welcome To Baghdad University"):

Table (1): The Execution Time of RSA and RSA-Based-CRT Decryption

Decryption

Key Size RSA RSA-CRT

512 16ms 4ms

768 23ms 7ms

1024 47ms 15ms

1536 125ms 31ms

1792 172ms 47ms

2048 281ms 78ms

2560 531ms 140ms

4096 2000ms 547ms



2012Ammar H. Jasimعمار حسین جاس. م. م

164 |11th Scientific Conference 19-20 Nov.2011|

Table (2): The Execution Time of RSA Encryption

Encryption e=3
Key Size RSA

512 0.19ms
768 0.22ms
1024 0.47ms
1536 0.66ms
1792 0.92ms
2048 1.53ms
2560 1.78ms
4096 2.1ms

The algorithms were implemented on an Intel(R) Core(TM) 2 Due CPU
T7250 @ 2.00 GHz with 1024MB RAM, running the Microsoft Windows XP
Professional edition version 2002 Service Pack 3.

While the 512-bit RSA-CRT is definitely the fastest among the ones
shown, it is not the most secure, providing marginal security from an intensive
attack. The 1792-bit and 2048-bit RSA-CRT reduces balance better than RSA
method between speed and security and supposes to be used in critical
situations since it offers maximum resistance to attacks. The result shows that
the level of security between 2048 and 4096 bit reduces a suitable balance
between speed and security in RSA-based-CRT according to the gained
results.

8. CONCLUSIONS
Looking at the results shown in table (1), RSA-CRT is faster than the

standard RSA in most cases. Feasibility analysis is done by comparing the
time taken for RSA and RSA-based-CRT. It shows that when increasing key
length then the decryption total time increases steadily. However, when
comparing table (2) results with that of [9], which uses e=65536 as encryption
exponent, it can be concluded that RSA encryption with e=3 is faster as
compared with e=65536.

Practical comparisons have been made to RSA-CRT and that of the
standard RSA for different key sizes. It can thus be said that software
implementation of the RSA-CRT is the fastest.
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باستعمال لغة الجافاRSAتصمیم وتطبیق خوارزمیة سریعة لفتح تشفیر الــــ 

عمار حسین جاسم .م.م
كلیة العلوم للبنات/جامعة بغداد 

:المستخلص
وطریقة التربیع مع (CRT)باستخدام نظریةِ البقیّةِ الصینیةِ RSAتم تصمیم وتطبیق خوارزمیة سریعة لطریقة 

كذلك تضمن تطبی. الضرب
.للاعداد الصحیحة الكبیرة

RSA.
RSAیركزھذا العمل على تسریع جزء حل  التشفیرفي خوارزمیة الـ. Fermatونظریة CRTالنَتائِجِ في 

لتكوین مفاتیح CRTأسّیة لــ تم تصمیم مجموعة لتولید ارقام صحیحة اولیة كبیرة خاصة  لتولید معاملات . CRTالى 
التشفی

.اٌولي تم تولیده بدلا من استعمال الدالة اًلاُسیة نفسھا

م . تم استعمال إختبار میلیر رابین الإحتمالي على أرقام صحیحة كبیرة
. صحیحة عشوائیة مع احتمالیة ان تكون أولیة لطول محدد من الــثنائیات

.اختبارھا بأستعمال الخوارزمیة المقترحة


